On Randers metrics of reversible projective Ricci curvature

Authors

Abstract:

projective Ricci curvature. Then we characterize isotropic projective Ricci curvature of Randers metrics. we also show that Randers metrics are PRic-reversible if and only if they are PRic-quadratic../files/site1/files/0Abstract2.pdf

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Randers Metrics of Scalar Flag Curvature

We study an important class of Finsler metrics — Randers metrics. We classify Randers metrics of scalar flag curvature whose S-curvatures are isotropic. This class of Randers metrics contains all projectively flat Randers metrics with isotropic S-curvature and Randers metrics of constant flag curvature.

full text

Randers Metrics of Sectional Flag Curvature

A Finsler metric is of sectional flag curvature if its flag curvature depends only on the section. In this article, we characterize Randers metrics of sectional flag curvature. It is proved that any non-Riemannian Randers metric of sectional flag curvature must have constant flag curvature if the dimension is greater than two. 0. Introduction Finsler geometry has a long history dated from B. Ri...

full text

Classification of Randers Metrics of Scalar Flag Curvature

This is a survey article about the recent developments in classifying Randers metrics of scalar flag curvature under an additional condition on the isotropic S-curvature. The authors give an outline of the proof for the classification theorem.

full text

On the Ricci curvature of normal metrics on Biquotients

We show that any normal metric on a closed biquotient with finite fundamental group has positive Ricci curvature.

full text

Metrics of positive Ricci curvature on quotient spaces

One of the classical problems in differential geometry is the investigation of closed manifolds which admit Riemannian metrics with given lower bounds for the sectional or the Ricci curvature and the study of relations between the existence of such metrics and the topology and geometry of the underlying manifold. Despite many efforts during the past decades, this problem is still far from being...

full text

On dually flat Randers metrics

The notion of dually flat Finsler metrics arise from information geometry. In this paper, we will study a special class of Finsler metrics called Randers metrics to be dually flat. A simple characterization is provided and some non-trivial explicit examples are constructed. In particular, We will show that the dual flatness of a Randers metric always arises from that of some Riemannian metric b...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue 2

pages  105- 112

publication date 2018-03

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023