On normalizers of maximal subfields of division algebras
author
Abstract:
Here, we investigate a conjecture posed by Amiri and Ariannejad claiming that if every maximal subfield of a division ring $D$ has trivial normalizer, then $D$ is commutative. Using Amitsur classification of finite subgroups of division rings, it is essentially shown that if $D$ is finite dimensional over its center then it contains a maximal subfield with non-trivial normalizer if and only if $D^*$ contains a non-abelian soluble subgroup. This result generalizes a theorem of Mahdavi-Hezavehi and Tignol about cyclicity of division algebras of prime index.
similar resources
Subfields of division algebras
Let A be a finitely generated domain of GK dimension less than 3 over a field K and let Q(A) denote the quotient division algebra of A. Using the ideas of Smoktunowicz, we show that if D is a finitely generated division subalgebras of Q(A) of GK dimension at least 2, then Q(A) is finite dimensional as a left D-vector space. We use this to show that if A is a finitely generated domain of GK dime...
full textSubfields of Nondegenerate Tame Semiramified Division Algebras
We show in this article that in many cases the subfields of a nondegenerate tame semiramified division algebra of prime power degree over a Henselian valued field are inertial field extensions of the center [Th. 2.5, Th. 2.12 and Prop. 2.16 ].
full textOn the transcendence degree of subfields of division algebras
Abstract We study subfields of quotient division algebras of domains of finite GK dimension and introduce a combinatorial property we call the straightening property. We show that many classes of algebras have this straightening property and show that if A is a domain of GK dimension d with this property that is not PI, then the maximal subfields of the quotient division algebra of A have trans...
full textNon-cyclic Algebras with Pure Maximal Subfields*
One of the most elementary consequences of the assumption that a normal division algebra A is cyclic of degree n over its centrum K is that A contains a quantity j whose minimum equation is co=7 in K. In 1933 I conjectured the truth of the converse proposition. The proof is easily reducible f to the case where n is a power p of a prime p. Let a be the characteristic of K. I succeeded in proving...
full textthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولNormalizers of Maximal Tori
Normalizers and p-normalizers of maximal tori in p-compact groups can be characterized by the Euler characteristic of the associated homogeneous spaces. Applied to centralizers of elementary abelian p-groups these criteria show that the normalizer of a maximal torus of the centralizer is given by the centralizer of a preferred homomorphism to the normalizer of the maximal torus; i.e. that “norm...
full textMy Resources
Journal title
volume 43 issue 6
pages 2051- 2056
publication date 2017-11-30
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023