On Laplacian energy of non-commuting graphs of finite groups

Authors

  • P. Dutta Department of Mathematical Sciences, Tezpur University, Napaam-784028, Sonitpur, Assam, India
  • R. K. Nath Department of Mathematical Sciences, Tezpur University, Napaam-784028, Sonitpur, Assam, India
Abstract:

‎Let $G$ be a finite non-abelian group with center $Z(G)$‎. ‎The non-commuting graph of $G$ is a simple undirected graph whose vertex set is $Gsetminus Z(G)$ and two vertices $x$ and $y$ are adjacent if and only if $xy ne yx$‎. ‎In this paper‎, we compute Laplacian energy of the non-commuting graphs of some classes of finite non-abelian groups‎..

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

commuting and non -commuting graphs of finit groups

فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...

15 صفحه اول

Relative n-th non-commuting graphs of finite groups

‎Suppose $n$ is a fixed positive integer‎. ‎We introduce the relative n-th non-commuting graph $Gamma^{n} _{H,G}$‎, ‎associated to the non-abelian subgroup $H$ of group $G$‎. ‎The vertex set is $Gsetminus C^n_{H,G}$ in which $C^n_{H,G} = {xin G‎ : ‎[x,y^{n}]=1 mbox{~and~} [x^{n},y]=1mbox{~for~all~} yin H}$‎. ‎Moreover‎, ‎${x,y}$ is an edge if $x$ or $y$ belong to $H$ and $xy^{n}eq y^{n}x$ or $x...

full text

Laplacian Spectrum of non-commuting graphs of finite groups

In this paper, we compute the Laplacian spectrum of non-commuting graphs of some classes of finite non-abelian groups. Our computations reveal that the non-commuting graphs of all the groups considered in this paper are L-integral. We also obtain some conditions on a group G so that its non-commuting graph is L-integral.

full text

On the energy of non-commuting graphs

For given non-abelian group G, the non-commuting (NC)-graph $Gamma(G)$ is a graph with the vertex set $G$ $Z(G)$ and two distinct vertices $x, yin V(Gamma)$ are adjacent whenever $xy neq yx$. The aim of this paper is to compute the spectra of some well-known NC-graphs.

full text

relative n-th non-commuting graphs of finite groups

‎suppose $n$ is a fixed positive integer‎. ‎we introduce the relative n-th non-commuting graph $gamma^{n} _{h,g}$‎, ‎associated to the non-abelian subgroup $h$ of group $g$‎. ‎the vertex set is $gsetminus c^n_{h,g}$ in which $c^n_{h,g} = {xin g‎ : ‎[x,y^{n}]=1 mbox{~and~} [x^{n},y]=1mbox{~for~all~} yin h}$‎. ‎moreover‎, ‎${x,y}$ is an edge if $x$ or $y$ belong to $h$ and $xy^{n}eq y^{n}x$ or $x...

full text

A Kind of Non-commuting Graph of Finite Groups

Let g be a fixed element of a finite group G. We introduce the g-noncommuting graph of G whose vertex set is whole elements of the group G and two vertices x,y are adjacent whenever [x,y] g  and  [y,x] g. We denote this graph by . In this paper, we present some graph theoretical properties of g-noncommuting graph. Specially, we investigate about its planarity and regularity, its clique number a...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 07  issue 02

pages  121- 132

publication date 2018-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023