On Heyting algebras and dual BCK-algebras

Authors

Abstract:

A Heyting algebra is a distributive lattice with implication and a dual $BCK$-algebra is an algebraic system having as models logical systems equipped with implication. The aim of this paper is to investigate the relation of Heyting algebras between dual $BCK$-algebras. We define notions of $i$-invariant and $m$-invariant on dual $BCK$-semilattices and prove that a Heyting semilattice is equivalent to an $i$-invariant and $m$-invariant dual $BCK$-semilattices, and show that a commutative Heyting algebra is equivalent to a bounded implicative dual $BCK$-algebra.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

on heyting algebras and dual bck-algebras

a heyting algebra is a distributive lattice with implication and a dual $bck$-algebra is an algebraic system having as models logical systems equipped with implication. the aim of this paper is to investigate the relation of heyting algebras between dual $bck$-algebras. we define notions of $i$-invariant and $m$-invariant on dual $bck$-semilattices and prove that a heyting semilattice is equiva...

full text

Dualities and Dual Pairs in Heyting Algebras

We extract the abstract core of finite homomorphism dualities using the techniques of Heyting algebras and (combinatorial) categories.

full text

On Hyper Pseudo BCK-algebras

In this paper, we introduce the notion of hyper pseudo B C K - algebras, which is a generalization of pseudo BCK -algebras and hyper BCK -algebras and we investigates some related properties. In follow, we de ne some kinds of hyper pseudo BCK -ideals of a hyper pseudo BCK - algebra and we find the relations among them. Finally, we characterize the hyper pseudo BCK -ideals of type 4 generated by...

full text

Profinite Heyting Algebras and Profinite Completions of Heyting Algebras

This paper surveys recent developments in the theory of profinite Heyting algebras (resp. bounded distributive lattices, Boolean algebras) and profinite completions of Heyting algebras (resp. bounded distributive lattices, Boolean algebras). The new contributions include a necessary and sufficient condition for a profinite Heyting algebra (resp. bounded distributive lattice) to be isomorphic to...

full text

Negation and BCK-algebras

In this paper we consider twelve classical laws of negation and study their relations in the context of BCKalgebras. A classification of the laws of negation is established and some characterizations are obtained. For example, using the concept of translation we obtain some characterizations of Hilbert algebras and commutative BCK-algebras with minimum. As a consequence we obtain a theorem rela...

full text

BCK-ALGEBRAS AND HYPER BCK-ALGEBRAS INDUCED BY A DETERMINISTIC FINITE AUTOMATON

In this note first we define a BCK‐algebra on the states of a deterministic finite automaton. Then we show that it is a BCK‐algebra with condition (S) and also it is a positive implicative BCK‐algebra. Then we find some quotient BCK‐algebras of it. After that we introduce a hyper BCK‐algebra on the set of all equivalence classes of an equivalence relation on the states of a deterministic finite...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 38  issue 1

pages  159- 168

publication date 2012-04-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023