On $(epsilon)$ - Lorentzian para-Sasakian Manifolds

Authors

  • A. Prakash Department of Mathematics, National Institute of Technology, Kurukshetra - 136 119, India
  • D. G. Prakasha Department of Mathematics, Faculty of Science, Davangere University, Shivagangothri, Davangere - 577 007, India
  • M. Nagaraja Department of Mathematics, Tunga Mahavidyalaya, Thirthahalli - 577 432, India
  • P. Veeresha Center for Mathematical Needs, Department of Mathematics, CHRIST (Deemed to be University), Bengaluru 560029, India
Abstract:

The object of this paper is to study $(epsilon)$-Lorentzian para-Sasakian manifolds. Some typical identities for the curvature tensor and the Ricci tensor of $(epsilon)$-Lorentzian para-Sasakian manifold are investigated. Further, we study globally $phi$-Ricci symmetric and weakly $phi$-Ricci symmetric $(epsilon)$-Lorentzian para-Sasakian manifolds and obtain interesting results.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

On Para-sasakian Manifolds

In ([1]), T. Adati and K. Matsumoto defined para-Sasakian and special para-Sasakian manifolds which are considered as special cases of an almost paracontact manifold introduced by I. Sato and K. Matsumoto ([10]). In the same paper, the authors studied conformally symmetric para-Sasakian manifolds and they proved that an ndimensional (n>3) conformally symmetric para-Sasakian manifold is conforma...

full text

Ricci Solitons in Lorentzian Α-sasakian Manifolds

We study Ricci solitons in Lorentzian α-Sasakian manifolds. It is shown that a symmetric parallel second order covariant tensor in a Lorentzian α-Sasakian manifold is a constant multiple of the metric tensor. Using this it is shown that if LV g + 2S is parallel, V is a given vector field then (g, V ) is Ricci soliton. Further, by virtue of this result Ricci solitons for (2n + 1)-dimensional Lor...

full text

On Concircularly Φ−recurrent Para-sasakian Manifolds

A transformation of an n-dimensional Riemannian manifold M , which transforms every geodesic circle of M into a geodesic circle, is called a concircular transformation. A concircular transformation is always a conformal transformation. Here geodesic circle means a curve in M whose first curvature is constant and second curvature is identically zero. Thus, the geometry of concircular transformat...

full text

On Lightlike Geometry of Para-Sasakian Manifolds

We study lightlike hypersurfaces of para-Sasakian manifolds tangent to the characteristic vector field. In particular, we define invariant lightlike hypersurfaces and screen semi-invariant lightlike hypersurfaces, respectively, and give examples. Integrability conditions for the distributions on a screen semi-invariant lightlike hypersurface of para-Sasakian manifolds are investigated. We obtai...

full text

On Generalized Recurrent and Ricci Recurrent Lorentzian Trans-Sasakian Manifolds

The purpose of the paper is to introduce the notion of generalized recurrent Lorentzian transSasakian manifold and study some of the properties of generalized recurrent and Ricci recurrent Lorentzian Trans-Sasakian manifolds.

full text

Radical Transversal Lightlike Submanifolds of Indefinite Para-sasakian Manifolds

In this paper, we study radical transversal lightlike submanifolds and screen slant radical transversal lightlike submanifolds of indefinite para-Sasakian manifolds giving some non-trivial examples of these submanifolds. Integrability conditions of distributions D and RadTM on radical transversal lightlike submanifolds and screen slant radical transversal lightlike submanifolds of indefinite pa...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 17  issue 2

pages  243- 252

publication date 2022-09

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023