On co-Noetherian dimension of rings

Authors

Abstract:

We define and studyco-Noetherian dimension of rings for which the injective envelopeof simple modules have finite Krull-dimension. This  is a Moritainvariant dimension that measures how far the ring is from beingco-Noetherian. The co-Noetherian dimension of certain rings,including commutative rings, are determined. It is shown that the class ${mathcal W}_n$ of rings with co-Noetherian dimension $leqn$ is closed under homomorphic images and finite normalizingextensions, and that for each $n$ there exist rings withco-Noetherian dimension $n$. The possible relations between Krull and co-Noetherian dimensions  are investigated, and examples are provided to show that these dimensions are independent of eachother.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

on co-noetherian dimension of rings

we define and studyco-noetherian dimension of rings for which the injective envelopeof simple modules have finite krull-dimension. this  is a moritainvariant dimension that measures how far the ring is from beingco-noetherian. the co-noetherian dimension of certain rings,including commutative rings, are determined. it is shown that the class ${mathcal w}_n$ of rings with co-noetherian dimension...

full text

Noetherian Rings—Dimension and Chain Conditions

In this paper we look at the properties of modules and prime ideals in finite dimensional noetherian rings. This paper is divided into four sections. The first section deals with noetherian one-dimensional rings. Section Two deals with what we define a “zero minimum rings” and explores necessary and sufficient conditions for the property to hold. In Section Three, we come to the minimal prime i...

full text

On Nonnil-Noetherian Rings

Let R be a commutative ring with 1 such that Nil(R) is a divided prime ideal of R. The purpose of this paper is to introduce a new class of rings that is closely related to the class of Noetherian rings. A ring R is called a Nonnil-Noetherian ring if every nonnil ideal of R is finitely generated. We show that many of the properties of Noetherian rings are also true for Nonnil-Noetherian rings; ...

full text

Fully Bounded Noetherian Rings

Let i : A → R be a ring morphism, and χ : R → A a right R-linear map with χ(χ(r)s) = χ(rs) and χ(1 R) = 1 A. If R is a Frobenius A-ring, then we can define a trace map tr : A → A R. If there exists an element of trace 1 in A, then A is right FBN if and only if A R is right FBN and A is right noetherian. The result can be generalized to the case where R is an I-Frobenius A-ring. We recover resul...

full text

Rigid left Noetherian rings

Let R be an associative ring. A map σ : R → R is called a ring endomorphism if σ(x+y) = σ(x)+σ(y) and σ(xy) = σ(x)σ(y) for all elements a,b ∈ R. A ring R is said to be rigid if it has only the trivial ring endomorphisms, that is, identity idR and zero 0R . Rigid left Artinian rings were described by Maxson [9] and McLean [11]. Friger [4, 6] has constructed an example of a noncommutative rigid r...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 38  issue 1

pages  113- 122

publication date 2012-04-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023