On C3-Like Finsler Metrics

Authors

  • A. Tayebi
  • E. Peyghan
Abstract:

In this paper, we study the class of of C3-like Finsler metrics which contains the class of semi-C-reducible Finsler metric. We find a condition on C3-like metrics under which the notions of Landsberg curvature and mean Landsberg curvature are equivalent.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Generalized Douglas-Weyl Finsler Metrics

In this paper, we study generalized Douglas-Weyl Finsler metrics. We find some conditions under which the class of generalized Douglas-Weyl (&alpha, &beta)-metric with vanishing S-curvature reduce to the class of Berwald metrics.

full text

Projective complex Finsler metrics

In this paper we obtain the conditions in which two complex Finsler metrics are projective, i.e. have the same geodesics as point sets. Two important classes of such metrics are submitted to our attention: conformal projective and weakly projective complex Finsler spaces. For each of them we study the transformations of the canonical connection. We pay attention for local projectivity with a pu...

full text

On a class of locally projectively flat Finsler metrics

‎In this paper we study Finsler metrics with orthogonal invariance‎. ‎We‎ ‎find a partial differential equation equivalent to these metrics being locally projectively flat‎. ‎Some applications are given‎. ‎In particular‎, ‎we give an explicit construction of a new locally projectively flat Finsler metric of vanishing flag curvature which differs from the Finsler metric given by Berwald in 1929.

full text

Control Contraction Metrics on Finsler Manifolds

Control Contraction Metrics (CCMs) provide a nonlinear controller design involving an offline search for a Riemannian metric and an online search for a shortest path between the current and desired trajectories. In this paper, we generalize CCMs to Finsler geometry, allowing the use of nonRiemannian metrics. We provide open loop and sampled data controllers. The sampled data control constructio...

full text

On BC-generalized Landsberg Finsler metrics

Equality of hh -curvatures of the Berwald and Cartan connections leads to a new class of Finsler metrics, socalled BC-generalized Landsberg metrics. Here, we prove that every BC-generalized Landsberg metric of scalar flag curvature with dimension greater than two is of constant flag curvature.

full text

on r-quadratic finsler metrics

we prove that every r-quadratic metric of scalar flag curvature with a dimension greater than twois of constant flag curvature. then we show that generalized douglas-weyl metrics contain r-quadraticmetrics as a special case, but the class of r-quadratic metric is not closed under projective transformations

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue None

pages  1- 6

publication date 2012-05

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023