On boundary value problems of higher order abstract fractional integro-differential equations

Authors

  • Machindra B. Dhakne Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad - 431004, Maharashtra, India.
  • Sabri T. M. Thabet Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad - 431004, Maharashtra, India.
Abstract:

The aim of this paper is to establish the existence of solutions of boundary value problems of nonlinear fractional integro-differential equations involving Caputo fractional derivative by using the techniques such as fractional calculus, H"{o}lder inequality, Krasnoselskii's fixed point theorem and nonlinear alternative of Leray-Schauder type. Examples are exhibited to illustrate the main results.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Impulsive Boundary-value Problems for First-order Integro-differential Equations

This article concerns boundary-value problems of first-order nonlinear impulsive integro-differential equations: y′(t) + a(t)y(t) = f(t, y(t), (Ty)(t), (Sy)(t)), t ∈ J0, ∆y(tk) = Ik(y(tk)), k = 1, 2, . . . , p,

full text

Existence of solutions of boundary value problems for Caputo fractional differential equations on time scales

‎In this paper‎, ‎we study the boundary-value problem of fractional‎ ‎order dynamic equations on time scales‎, ‎$$‎ ‎^c{Delta}^{alpha}u(t)=f(t,u(t)),;;tin‎ ‎[0,1]_{mathbb{T}^{kappa^{2}}}:=J,;;1

full text

Boundary value problems for higher order ordinary differential equations

Let f : [a, b] × R n+1 → R be a Carathéodory's function. Let {t h }, with t h ∈ [a, b], and {x h } be two real sequences. In this paper, the family of boundary value problems´x is considered. It is proved that these boundary value problems admit at least a solution for each k ≥ ν, where ν ≥ n + 1 is a suitable integer. Some particular cases, obtained by specializing the sequence {t h }, are poi...

full text

Singular Higher Order Boundary Value Problems for Ordinary Differential Equations

This paper is somewhat of an extension of the recent work done by Kunkel [6]. Kunkel looked at an extension of Rachu̇nková and Rachu̇nek’s work where they studied a second order singular boundary value problem for the discrete p-Laplacian, φp(x) = |x|x [7]. Kunkel’s results extend theirs to the second order differential case, but only for p = 2, i.e. φ2(x) = x. In this paper, we extend Kunkel’s w...

full text

Existence of Solutions for Nonlocal Boundary Value Problems of Higher-Order Nonlinear Fractional Differential Equations

and Applied Analysis 3 involving fractional differential equations the same applies to the boundary value problems of fractional differential equations . Moreover, the Caputo derivative for a constant is zero while the Riemann-Liouville fractional derivative of a constant is nonzero. For more details, see 17 . Lemma 2.4 see 28 . For q > 0, the general solution of the fractional differential equ...

full text

On boundary value problem for fractional differential equations

In this paper‎, ‎we study the existence of solutions for a‎ ‎ fractional boundary value problem‎. ‎By using critical point theory‎ ‎ and variational methods‎, ‎we give some new criteria to guarantee‎ ‎ that‎ ‎ the problems have at least one solution and infinitely many solutions.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue 2

pages  165- 184

publication date 2016-12-26

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023