ON AN EXTENSION OF A QUADRATIC TRANSFORMATION FORMULA DUE TO GAUSS
Authors
Abstract:
The aim of this research note is to prove the following new transformation formula begin{equation*} (1-x)^{-2a},_{3}F_{2}left[begin{array}{ccccc} a, & a+frac{1}{2}, & d+1 & & \ & & & ; & -frac{4x}{(1-x)^{2}} \ & c+1, & d & & end{array}right] \ =,_{4}F_{3}left[begin{array}{cccccc} 2a, & 2a-c, & a-A+1, & a+A+1 & & \ & & & & ; & -x \ & c+1, & a-A, & a+A & & end{array} right], end{equation*} where $A^2=a^2-2ad+cd$ after the equation. For d=c, we get a known quadratic transformations due to Gauss. The result is derived with the help of the generalized Gauss's summation theorem available in the literature.
similar resources
Extension of a quadratic transformation due to Exton
Keywords: Quadratic transformation Hypergeometric function of order two Kummer–type transformations Bailey's transform a b s t r a c t By applying various known summation theorems to a general formula based upon Bailey's transform theorem due to Slater, Exton has obtained numerous new quadratic transformations involving hypergeometric functions of two and of higher order. Some of the results ha...
full textExtension of a quadratic transformation due to Whipple with an application
The aim of this research is to provide an extension of an interesting and useful quadratic transformation due to Whipple. The result is derived with the help of extension of classical Saalschütz’s summation theorem recently added in the literature. The transformation is further used to obtain a new hypergeometric identity by employing the so-called beta integral method introduced and studied sy...
full textQuadratic Zonotopes - An Extension of Zonotopes to Quadratic Arithmetics
Affine forms are a common way to represent convex sets of R using a base of error terms ǫ P r ́1, 1s. Quadratic forms are an extension of affine forms enabling the use of quadratic error terms ǫiǫj . In static analysis, the zonotope domain, a relational abstract domain based on affine forms has been used in a wide set of settings, e.g. setbased simulation for hybrid systems, or floating point an...
full textthe aesthetic dimension of howard barkers art: a frankfurtian approach to scenes from an execution and no end of blame
رابطه ی میانِ هنر و شرایطِ اجتماعیِ زایش آن همواره در طولِ تاریخ دغدغه ی ذهنی و دل مشغولیِ اساسیِ منتقدان و نیز هنرمندان بوده است. از آنجا که هنر در قفس آهنیِ زندگیِ اجتماعی محبوس است، گسترش وابستگیِ آن با نهاد ها و اصولِ اجتماعی پیرامون، صرفِ نظر از هم سو بودن و یا غیرِ هم سو بودنِ آن نهاد ها، امری اجتناب ناپذیر به نظر می رسد. با این وجود پدیدار گشتنِ چنین مباحثِ حائز اهمییتی در میان منتقدین، با ظهورِ مکتب ما...
Gauss-Hermite approximation formula
A multidimesional function y(~r) defined by a sample of points {~ri, yi} is approximated by a differentiable function ỹ(~r). The problem is solved by using the GaussHermite folding method developed in the nuclear shell correction method by Strutinsky.
full textMy Resources
Journal title
volume 1 issue 3 (SUMMER)
pages 171- 174
publication date 2011-06-22
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023