Numerical Study of Non-Newtonian Flow Through Rectangular Microchannels

Authors: not saved
Abstract:

A numerical investigation was carried out to solve the flow dimensionless partial differential equations through rectangular microchannels. A purely viscous power law model was used to characterize the flow behavior of non-Newtonian fluids. The flow was assumed to be steady and laminar, and slip conditions were used as boundary conditions at the walls. The problem was solved for different power law indices as well as for various rectangular aspect ratios. Results showed that the effects ofslip velocity on dilatant fluids are more pronounced than that for pseudoplastic fluids. An increase in the power law index enhances the product of the friction factor and the Reynolds number, as well as the dimensionless incremental pressure drop and the dimensionless maximum velocity, while the hydrodynamic entrance length decreases. Results emphasize the significant effects of channel aspect ratio on the hydrodynamic flow behavior through microchannels.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Time-periodic Electroosmotic Flow of Non-newtonian Fluids in Microchannels

The alternating current electroosmotic flow of a non-Newtonian power-law fluid is studied in a circular microchannel. A numerical method is employed to solve the non-linear Poisson-Boltzmann and the momentum equations. The main parameters which affect the flow field are the flow behavior index, the dimensionless zeta potential and the dimensionless frequency. At very low dimensionless frequenci...

full text

Numerical Simulation of Turbulent Subsonic Compressible Flow through Rectangular Microchannel

In this study, turbulent compressible gas flow in a rectangular micro-channel is numerically investigated. The gas flow assumed to be in the subsonic regime up to Mach number about 0.7. Five low and high Reynolds number RANS turbulence models are used for modeling the turbulent flow. Two types of mesh are generated depending on the employed turbulence model. The computations are performed for R...

full text

Slip Velocity in Flow and Heat Transfer of Non-newtonian Fluids in Microchannels

The steady-state fully-developed laminar flow of non-Newtonian power-law fluids is examined in a circular microchannel with slip boundary condition and under an imposed constant wall heat flux. Effects of slip as well as the hydrodynamic and thermal key parameters on heat transfer and entropy generation are investigated. The results reveal that increasing the Brinkman number and the flow behavi...

full text

Numerical simulation of flow through microchannels with designed roughness

A three-dimensional numerical simulation of flow through serpentine microchannels with designed roughness in form of obstructions placed along the channels walls is conducted here. CFD-ACE+ is used for the numerical simulations. The effect of the roughness height (surface roughness), geometry, Reynolds number on the friction factor is investigated. It is found that the friction factor increases...

full text

Non-Newtonian Fluid Flow through Fabrics

Abstract The flow of a fluid through textiles has been studied for a number of years. Understanding the flow phenomena along with the corresponding environmental changes (pressure drop, concentration gradient, etc.) becomes important in many fields, such as liquid transport through geomembranes, effluent movement through filtration devices, and chemical movement through protective apparel. This...

full text

Study of Fluid Flow and Heat Transfer of AL2O3-Water as a Non-Newtonian Nanofluid through Lid-Driven Enclosure

Flow field and heat transfer of a nanofluid, whose non-Newtonian behavior has been demonstrated in the laboratory, in a square enclosure have been numerically modeled and investigated. To estimate the viscosity of nanofluid, experimental data of Hong and Kim, 2012 have been used, and a new model has been proposed. Finally, the obtained results have been compared to those of Newtonian behavior. ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 4

pages  44- 61

publication date 2009-10-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023