Numerical solution of variational problems via Haar wavelet quasilinearization technique

Authors

  • Mohammad Zarebnia Department of Mathematics, University of Mohaghegh Ardabili, 56199-11367 Ardabil, Iran
Abstract:

In this paper, a numerical solution based on Haar wavelet quasilinearization (HWQ) is used for finding the solution of nonlinear Euler-Lagrange equations which arise from the problems in calculus of variations. Some examples of variational problems are given and outcomes compared with exact solutions to demonstrate the accuracy and efficiency of the method.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Haar Wavelet Quasilinearization Approach for Solving Nonlinear Boundary Value Problems

Objective of our paper is to present the Haar wavelet based solutions of boundary value problems by Haar collocation method and utilizing Quasilinearization technique to resolve quadratic nonlinearity in y. More accurate solutions are obtained by wavelet decomposition in the form of a multiresolution analysis of the function which represents solution of boundary value problems. Through this ana...

full text

A Haar wavelet quasilinearization approach for numerical simulation of Burgers' equation

In this paper, an efficient numerical scheme based on uniform Haar wavelets and the quasilinearization process is proposed for the numerical simulation of time dependent nonlinear Burgers’ equation. The equation has great importance in many physical problems such as fluid dynamics, turbulence, sound waves in a viscous medium etc. The Haar wavelet basis permits to enlarge the class of functions ...

full text

Numerical Solution of Fractional Control System by Haar-wavelet Operational Matrix ‎Method

In recent years, there has been greater attempt to find numerical solutions of differential equations using wavelet's methods. The following method is based on vector forms of Haar-wavelet functions. In this paper, we will introduce one dimensional Haar-wavelet functions and the Haar-wavelet operational matrices of the fractional order integration. Also the Haar-wavelet operational matrices of ...

full text

Numerical solution of non-planar Burgers equation by Haar wavelet method

In this paper, an efficient numerical scheme based on uniform Haar wavelets is used to solve the non-planar Burgers equation. The quasilinearization technique is used to conveniently handle the nonlinear terms in the non-planar Burgers equation. The basic idea of Haar wavelet collocation method is to convert the partial differential equation into a system of algebraic equations that involves a ...

full text

A numerical approach to solve eighth order boundary value problems by Haar wavelet collocation method

In this paper a robust and accurate algorithm based on Haar wavelet collocation method (HWCM) is proposed for solving eighth order boundary value problems. We used the Haar direct method for calculating multiple integrals of Haar functions. To illustrate the efficiency and accuracy of the concerned method, few examples are considered which arise in the mathematical modeling of fluid dynamics an...

full text

A numerical technique for solving a class of 2D variational problems using Legendre spectral method

An effective numerical method based on Legendre polynomials is proposed for the solution of a class of variational problems with suitable boundary conditions. The Ritz spectral method is used for finding the approximate solution of the problem. By utilizing the Ritz method, the given nonlinear variational problem reduces to the problem of solving a system of algebraic equations. The advantage o...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 3

pages  249- 260

publication date 2016-07-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023