Numerical solution of gas solution in a fluid‎: ‎fractional derivative model

author

  • S. Esmaeili Department of Applied Mathematics, University of Kurdistan
Abstract:

‎A computational technique for solution of mathematical model of gas solution in a fluid is presented‎. ‎This model describes the change of mass of the gas volume due to diffusion through the contact surface‎. ‎An appropriate representation of the solution based on the M"{u}ntz polynomials reduces its numerical treatment to the solution of a linear system of algebraic equations‎. ‎Numerical examples are given and discussed to illustrate the effectiveness of the proposed approach‎.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Numerical solution for boundary value problem of fractional order with approximate Integral and derivative

Approximating the solution of differential equations of fractional order is necessary because fractional differential equations have extensively been used in physics, chemistry as well as engineering fields. In this paper with central difference approximation and Newton Cots integration formula, we have found approximate solution for a class of boundary value problems of fractional order. Three...

full text

Numerical solution of a fractional order model of HIV infection of CD4+T cells.

In this paper we consider a fractional order model of HIV infection of  CD4+T cells and we transform this fractional order system of ordinary differential equations to a system of weakly singular integral equations. Afterwards we propose a Nystrom method for solving resulting system, convergence result and order of convergence is obtained by using conditions of existence and uniqueness of solut...

full text

Numerical solution of diffusive HBV model in a fractional medium

Evolution systems containing fractional derivatives can result to suitable mathematical models for describing better and important physical phenomena. In this paper, we consider a multi-components nonlinear fractional-in-space reaction-diffusion equations consisting of an improved deterministic model which describe the spread of hepatitis B virus disease in areas of high endemic communities. Th...

full text

A Meshless Method for Numerical Solution of Fractional Differential Equations

In this paper, a technique generally known as meshless numerical scheme for solving fractional dierential equations isconsidered. We approximate the exact solution by use of Radial Basis Function(RBF) collocation method. This techniqueplays an important role to reduce a fractional dierential equation to a system of equations. The numerical results demonstrate the accuracy and ability of this me...

full text

Numerical Solution of Fractional Benney Equation

In this paper we propose a new solution technique for numerical solution of fractional Benney equation, a fourth degree nonlinear fractional partial differential equation with broad range of applications. The method could be described as a hybrid technique which uses advantages of both wavelets and operational matrices. Having applied the present method, fractional Benney equation is converted ...

full text

Analysis and numerical solution of a Riemann-Liouville fractional derivative two-point boundary value problem

A two-point boundary value problem is considered on the interval [0, 1], where the leading term in the differential operator is a Riemann-Liouville fractional derivative of order 2 − δ with 0 < δ < 1. It is shown that any solution of such a problem can be expressed in terms of solutions to two associated weakly singular Volterra integral equations of the second kind. As a consequence, existence...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 4

pages  425- 437

publication date 2017-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023