Numerical Solution of Fractional Black Scholes Equation Based on Radial Basis Functions Method
Authors
Abstract:
Options pricing have an important role in risk control and risk management. Pricing discussion requires modelling process, solving methods and implementing the model by real data in a given market. In this paper we show a model for underlying asset based on fractional stochastic models which is a particular type of behavior of stochastic assets changing. In addition a numerical method based on radial basis functions is presented that has more accurate answers than the other methods. The stability of the method is also studied. Finally, we carry out the model for real data in coin market by MATLAB software. May studying this paper results in a new approach for derivative pricing in markets.
similar resources
Numerical Solutions for Fractional Black-Scholes Option Pricing Equation
In this article we have applied a numerical finite difference method to solve the Black-Scholes European and American option pricing both presented by fractional differential equations in time and asset.
full textNumerical solution of fractional telegraph equation by using radial basis functions
In this paper, we implement the radial basis functions for solving a classical type of time-fractional telegraph equation defined by Caputo sense for ð1oαr2Þ. The presented method which is coupled of the radial basis functions and finite difference scheme achieves the semi-discrete solution. We investigate the stability, convergence and theoretical analysis of the scheme which verify the validi...
full textNumerical Solution of The Parabolic Equations by Variational Iteration Method and Radial Basis Functions
In this work, we consider the parabolic equation: $u_t-u_{xx}=0$. The purpose of this paper is to introduce the method of variational iteration method and radial basis functions for solving this equation. Also, the method is implemented to three numerical examples. The results reveal that the technique is very effective and simple.
full textNumerical Techniques Based on Radial Basis Functions
Radial basis functions are tools for reconstruction of mul-tivariate functions from scattered data. This includes, for instance, reconstruction of surfaces from large sets of measurements, and solving partial diierential equations by collocation. The resulting very large linear N N systems require eecient techniques for their solution, preferably of O(N) or O(N log N) computational complexity. ...
full textTHE COMPARISON OF EFFICIENT RADIAL BASIS FUNCTIONS COLLOCATION METHODS FOR NUMERICAL SOLUTION OF THE PARABOLIC PDE’S
In this paper, we apply the compare the collocation methods of meshfree RBF over differential equation containing partial derivation of one dimension time dependent with a compound boundary nonlocal condition.
full textMy Resources
Journal title
volume 6 issue 4
pages 0- 0
publication date 2021-01
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023