Numerical solution of Convection-Diffusion equations with memory term based on sinc method

Authors

  • Atefeh Fahim Department of Mathematics, Faculty of Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
Abstract:

‎In this paper‎, ‎we study the numerical solution of Convection-Diffusion equation with a memory term subject to initial boundary value conditions‎. ‎Finite difference method in combination with product trapezoidal integration rule is used to discretize the equation in time and sinc collocation method is employed in space‎. ‎The accuracy and error analysis of the method are discussed‎. ‎Numerical examples and illustrations are presented to prove the validity of the suggested method‎.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

A numerical method for solving nonlinear partial differential equations based on Sinc-Galerkin method

In this paper, we consider two dimensional nonlinear elliptic equations of the form $ -{rm div}(a(u,nabla u)) = f $. Then, in order to solve these equations on rectangular domains, we propose a numerical method based on Sinc-Galerkin method. Finally, the presented method is tested on some examples. Numerical results show the accuracy and reliability of the proposed method.

full text

Numerical solution of the one-dimensional fractional convection diffusion equations based on Chebyshev operational matrix

In this paper, we are concerned with nonlinear one-dimensional fractional convection diffusion equations. An effective approach based on Chebyshev operational matrix is constructed to obtain the numerical solution of fractional convection diffusion equations with variable coefficients. The principal characteristic of the approach is the new orthogonal functions based on Chebyshev polynomials to...

full text

Numerical Solution of the Lane-Emden Equation Based on DE Transformation via Sinc Collocation Method

In this paper‎, ‎numerical solution of‎ ‎general Lane-Emden equation via collocation method based on‎ ‎Double Exponential DE transformation is considered‎. ‎The‎ ‎method converts equation to the nonlinear Volterra integral‎ ‎equation‎. ‎Numerical examples show the accuracy of the method.‎ ‎Also‎, ‎some remarks with respect to run-time‎, computational cost‎ ‎and implementation are discussed.

full text

On Splitting-Based Numerical Methods for Convection-Diffusion Equations

Convection-diffusion equations model a variety of physical phenomena. Computing solutions of these equations is an important and challenging problem, especially in the convection dominated case, in which viscous layers are so thin that one is forced to use underresolved methods that may be unstable. If an insufficient amount of physical diffusion is compensated by an excessive numerical viscosi...

full text

Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type

In this paper, we have proposed a numerical method for singularly perturbed  fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and  finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided  in...

full text

Numerical Solution of Convection-Diffusion Integro-Differential Equations with a Weakly Singular Kernel

Many mathematical formulations of physical phenomena contain integro-differential equations. In this paper a numerical method is developed to solve the convection-diffusion integro-differential equations with a weakly singular kernel using the cubic B-spline collocation method. These equations occur in many applications such as in the transport of air and ground water pollutants, oil reservoir ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 3

pages  380- 395

publication date 2018-07-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023