Numerical Simulation of Beta Type Stirling Engine Considering Heat and Power Losses
Authors
Abstract:
In this paper, numerical solution of beta-type Stirling engine was presented considering its non-ideal regenerator. To this end, the second-order model including heat and power losses was used. Then, a numerical code was applied for calculating geometrical and physical optimum values of the engine. To confirm the obtained results, the physical and geometrical parameters of the GPU-3 engine were used. According to the obtained results, the values of heat and power losses in the engine were considerable. Based on the results, heat and power losses in the engine led to decreased power and efficiency by 50.1% and 22.7%, respectively. According to the results from the numerical code, the amounts of porosity, frequency, and length of the regenerator were suggested as less than 0.6, 40 to 50 Hz, and 18 to 22 mm, respectively. The results showed a material with high thermal capacity and low conductivity in the optimum physical and geometrical conditions of the engine.
similar resources
Efficiency Bound of a Solar-driven Stirling Heat Engine System
A solar-driven Stirling engine is modelled as a combined system which consists of a solar collector and a Stirling engine. The performance of the system is investigated, based on the linearized heat loss model of the solar collector and the irreverisible cycle model of the Stirling engine affected by finite-rate heat transfer and regenerative losses. The maximum efficiency of the system and the...
full textPerformance analysis a gas turbine cycle equipped with a double acting type stirling engine in a power generating unit
The aim of this study is to investigate the performance of a gas turbine cycle equipped with a Stirling engine from the thermodynamic point of view. In this system, part of the heat loss from the gas turbine is transmitted to a Stirling engine to generate more power. In the proposed system analysis, the governing equations of the hybrid cycle are modeled in MATLAB software and Schmidt and ideal...
full textMulti-objective Optimization of Stirling Heat Engine Using Gray Wolf Optimization Algorithm (TECHNICAL NOTE)
The use of meta-heuristic optimization methods have become quite generic in the past two decades. This paper provides a theoretical investigation to find optimum design parameters of the Stirling heat engines using a recently presented nature-inspired method namely the gray wolf optimization (GWO). This algorithm is utilized for the maximization of the output power/thermal efficiency as well as...
full textNumerical Simulation of Combustion with Porous Medium in I.C. Engine
Porous media has interesting features in compared with free flame combustion due to the extended of the lean flammability limits and lower emissions. Advanced new generation of internal combustion (IC) engines are expected to have far better emissions levels both gaseous and particulate matter, at the same time having far lower fuel consumption on a wide range of operating condition. These c...
full textاحتراق ذرات سوخت زیستتوده در یک واحد تولید همزمان توان و حرارت مقیاس کوچک
Increasing energy cost and reduction of fossil fuel resources have been resulted in increasing demand of renewable energy, such as micro biomass particles in small scale Stirling engines to generate combined heat and power. In such Stirling engines, biomass particles are burnt in external combustion chamber and then, the generated heat is transferred to the working fluid of the engine cycle. Th...
full textMy Resources
Journal title
volume 15 issue 2
pages 5- 27
publication date 2014-09-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023