Numerical Analysis of Mushroom-type Traveling Wave Electroabsorption Modulators Using Full-Vectorial Finite Difference Method

Authors

  • E. Darabi Plasma Physics Research Center, Science and Research Campus, IAU
  • K. Abedi Department of Electrical Engineering, Tarbiat Modares University
  • K. Moravvej-Farshi Department of Electrical Engineering, Tarbiat Modares University
  • V. Ahmadi Department of Electrical Engineering, Tarbiat Modares University
Abstract:

Larger width of P-cladding layer in p-i-n waveguide of traveling wave electroabsorption modulator (TWEAM) results in lower resistance and microwave propagation loss which provides an enhanced high speed electro-optical response. In this paper, a fullvectorial finite-difference-based optical mode solver is presented to analyze mushroom-type TWEAM for the first time. In this analysis, the discontinuities of the normal components of the electric field across abrupt dielectric interfaces which are known as the limitations of scalar and semivectorial approximation methods are considered. The optical field distributions in mushroom-type TWEAM and conventional ridge-type TWEAM of the same active region for 1.55 μm operation are presented. The important parameters in the high-frequency TWEAM design such as optical effective index which defines optical velocity and transverse mode confinement factor are calculated. The modulation response of mushroom-type TWEAM is calculated by considering interaction of microwave and optical fields in waveguide and compared to that of conventional ridge-type TWEAM. The calculated 3dB bandwidths for ridge-type and mushroom-type TWEAM are about 139 GHz and 166 GHz for 200 μm and 114 GHz and 126 GHz for 300 μm waveguide length, respectively.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

High-Speed Traveling-Wave Electroabsorption Modulators

Electroabsorption modulators (EAMs) based on the quantum confined Stark effect in multiple quantum wells (MQWs) have advantages for high-speed, low drive voltage, and high extinction ratio applications. In this paper, a traveling-wave electrode structure is proposed to achieve high bandwidths with long devices and lower drive voltages at 1.55μm wavelength. An InGaAsP/InGaAsP MQW traveling-wave ...

full text

Analog Characterization of Low-Voltage MQW Traveling-Wave Electroabsorption Modulators

In this paper, high-speed traveling-wave electroabsorption modulators (TW-EAMs) with strain-compensated InGaAsP multiple quantum wells as the absorption region for analog optical links have been developed. A record-high slope efficiency of 4/V, which is equivalent to a Mach–Zehnder modulator with a of 0.37 V and a high extinction ratio of 30 dB/V have been measured. A detailed study of the nonl...

full text

High Performance Hybrid Silicon Evanescent Traveling Wave Electroabsorption Modulators

In this paper, for the rst time, a high performance hybrid silicon evanescent traveling wave electroabsorption modulator based on asymmetric intra-step-barrier coupled double strained quantum wells active layer is introduced which has double steps at III/V mesa structure. Through this active layer, hybrid silicon evanescent traveling wave electroabsorption modulator will be advantages such as v...

full text

buckling of viscoelastic composite plates using the finite strip method

در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....

Selectively-undercut traveling-wave electroabsorption modulators incorporating a p-InGaAs contact layer.

A novel fabrication process has been developed for fabricating undercut-etched electroabsorption modulators that are compatible with tunable lasers. This process allows for the incorporation of highly doped p-type InGaAs above the upper cladding as an ohmic contact layer. The EAM demonstrates significant improvement in the microwave performance with little effect on modulation efficiency due to...

full text

Numerical Prediction of Stator Diameter Effect on the Output Torque of Ultrasonic Traveling-wave Motor, using Finite Elements Simulation

Nowadays, piezoelectric materials have wide applications in various industries. Therefore, investigation of these materials and their applications has a special importance. In this paper first, the natural frequencies of a traveling-wave piezoelectric motor are achieved, using finite elements simulations. Then, applying an alternative electrical voltage to the piezoelectric ring, a traveling wa...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 2  issue None

pages  9- 18

publication date 2008-02

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023