Novel design and simulation of predictive power controller for a doubly-fed induction generator using rotor current in a micro-hydropower plant
Authors
Abstract:
Hydropower plant and especially micro-hydropower plant is an available, reliable and economical energy source. Micro-hydropower plant is one of the most environment-friendly technology, use and development of which leads to reduction of energy consumption sporadically and worldwide. Along with the growth of these power plants, the issues related to the control of electrical parameters such as load, frequency, voltage and power are also constantly rising. This paper describes the proposed structure of variable speed micro-hydropower plant based on Doubly-Fed Induction Generator. The aim is to control the active and reactive powers for this generator. Here, the proposed controller applied to the generator is predictive power controller that adheres to the principle of predictive strategy. Therefore, in this research, a predictive power controller has been proposed to control active and reactive powers of a DFIG based micro-hydropower plant. The control law is acquired by optimizing a cost function considering the tracking factors. The prediction has been performed on basis of a DFIG model. Finally, the stimulations are carried out by Matlab/Simulink to verify the desired performance of controller.
similar resources
novel design and simulation of predictive power controller for a doubly-fed induction generator using rotor current in a micro-hydropower plant
hydropower plant and especially micro-hydropower plant is an available, reliable and economical energy source. micro-hydropower plant is one of the most environment-friendly technology, use and development of which leads to reduction of energy consumption sporadically and worldwide. along with the growth of these power plants, the issues related to the control of electrical parameters such as l...
full textA Novel Current Controller Scheme for Doubly Fed Induction Generators
This paper presents a novel current control methodology for grid connected doubly-fed induction generator (DFIG) based wind energy conversion systems. Controller is based on a proportional controller with additional first order low pass filter disturbance observer which estimates the parameter dependent nonlinear feed-forward terms. The results in simulations and experimental test bed obviously...
full textOptimal Operation of Doubly-fed Induction Generator used in a Grid-Connected Wind Power System
In this paper, a wind power system based on a doubly-fed induction generator (DFIG) is modeled and simulated. To guarantee high-performance control of the powers injected into the grid by the wind turbine, five intelligent super-twisting sliding mode controllers (STSMC) are used to eliminate the active power and current ripples of the DFIG. The STSMC controller is a high-order sliding mode cont...
full textLyapunov-Based Robust Power Controllers for a Doubly Fed Induction Generator
In this work, a robust nonlinear control technique of a doubly fed induction generator (DFIG) intended for wind energy systems has been proposed. The principal idea in this article is to decouple the active and reactive power of the DFIG with high robustness using the backstepping strategy. The principle of this control method is based on the Lyapunov function, in order to guarantee the global ...
full textNeuro-fuzzy Sliding Mode Controller Based on a Brushless Doubly Fed Induction Generator
The combination of neural networks and fuzzy controllers is considered as the most efficient approach for different functions approximation, and indicates their ability to control nonlinear dynamical systems. This paper presents a hybrid control strategy called Neuro-Fuzzy Sliding Mode Control (NFSMC) based on the Brushless Doubly fed Induction Generator (BDFIG). This replaces the sliding surfa...
full textMy Resources
Journal title
volume 5 issue 1
pages 43- 58
publication date 2017-03-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023