Normal Fermi-Walker Derivative in E_{1}^{3}

Authors

Abstract:

In this paper, firstly, in $E_1^3$, we defined normal Fermi-Walker derivative and applied for the adapted frame. Normal Fermi-Walker parallelism, normal non-rotating frame, and Darboux vector expressions of normal Fermi-Walker derivative by normal Fermi-Walker derivative are given for adapted frame. Being conditions of normal Fermi-Walker derivative and normal non-rotating frame are examined for frames throughout spacelike, timelike, lightlike curves. It is shown that the vector field which takes part in cite {Beyhan(2016)} is normal Fermi-Walker parallel by the normal Fermi-Walker derivative throughout the spacelike, timelike, and lightlike general helix. Also, we show that the Frenet frame is a normal non-rotating frame using the normal Fermi-Walker derivative. Afterward, we testified that the adapted frame is a normal non-rotating frame throughout the spacelike, timelike, and lightlike general helix.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

General Transformation Formulas for Fermi-Walker Coordinates

We calculate the transformation and inverse transformation, in the form of Taylor expansions, from arbitrary coordinates to Fermi-Walker coordinates in tubular neighborhoods of arbitrary timelike paths for general spacetimes. Explicit formulas for coefficients and the Jacobian matrix are given.

full text

Fermi Normal Coordinates and Fermion Curvature Couplings in General Relativity

We study gravitational curvature effects in circular and radial geodesics in static, spherically symmetric space-times, using Fermi normal coordinates. We first set up these coordinates in the general case, and then use this to study effective magnetic fields due to gravitational curvature in the exterior and interior Schwarzschild, Janis-Newman-Winicour, and Bertrand space-times. We show that ...

full text

Kinetic Equations in the Theory of Normal Fermi Liquid

On the bases of the improved approximation for the spectral function of oneparticle states the Landau-Silin kinetic equations for the normal Fermi liquids of neutral and electrically charged particles are shown to be valid at finite temperature above the temperature of superfluid transition.

full text

Time evolution of excitations in normal Fermi liquids

Y. Pavlyukh,1,* A. Rubio,2 and J. Berakdar1 1Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle, Germany 2Nano-Bio Spectroscopy Group and ETSF Scientific Development Centre, Departamento de Fı́sica de Materiales, Universidad del Paı́s Vasco, CFM CSIC-UPV/EHU-MPC and DIPC, Avenida Tolosa 72, E-20018 San Sebastián, Spain (Received 27 December 2012; revised manuscript recei...

full text

Invariantes conformes de curvas a través de la conexión de Fermi–Walker

Partiendo de la teoŕıa desarrollada en la tesis “Paralelismo y geodésicas en variedades conformes” [5], se utiliza la conexión de Fermi–Walker y el tensor conforme de Schouten para describir los invariantes conformes clásicos asociados a curvas en el espacio conforme plano R. En particular, estos resultados se aplican al estudio de dos ejemplos especiales de curvas: los ćırculos y las hélices. ...

full text

Spectral Function and Kinetic Equation for Normal Fermi Liquid

On the basis of the Kadanoff-Baym (KB) version of the time-dependent Green’s function method a new ansatz for the approximation of a spectral function is offered. The ansatz possesses all the advantages of quasiparticle (QP) and extended quasiparticle (EQP) approximations and satisfies the KB-equation for a spectral function in the case of slightly non-equilibrium system when disturbances in sp...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 9  issue 1

pages  86- 99

publication date 2020-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023