Nonlinear Vibration Analysis of Piezoelectric Functionally Graded Porous Timoshenko Beams

Authors

  • Ali Nouri Aerospace Faculty, Shahid Sattry Aeronautical University of Science and Technology
  • Enayatollah Hosseinian Department of Aerospace Engineering, Shahid Sattari Aeronautical University of Science and Technology, Tehran , Iran
  • Majid Zia Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran
Abstract:

In this paper, nonlinear vibration analysis of functionally graded piezoelectric (FGP) beam with porosities material is investigated based on the Timoshenko beam theory. Material properties of FG porous beam are described according to the rule of mixture which modified to approximate material properties with porosity phases. The Ritz method is used to obtain the governing equation which is then solved by a direct iterative method to determine the nonlinear vibration frequencies of FGP porous beam subjected to different boundary conditions. The effects of external electric voltage, material distribution profile, porosity volume fraction, slenderness ratios and boundary conditions on the nonlinear vibration characteristics of the FGP porous beam are discussed in detail. The results indicate that piezoelectric layers have significant effect on the nonlinear frequencies. Also it is found that the porosity has a considerable influence on the nonlinear frequency and these effects increased especially when the electric voltage is applied.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Free Vibration Analysis of Functionally Graded Materials Non-uniform Beams

In this article, nonuniformity effects on free vibration analysis of functionally graded beams is discussed. variation in material properties is modeled after Powerlaw and exponential models and the non-uniformity is assumed to be exponentially varying in the width along the beams with constant thickness. Analytical solution is achieved for free vibration with simply supported conditions. It is...

full text

Free Vibration Analysis of Functionally Graded Beams with Cracks

This study introduces the free vibration analysis of multilayered symmetric sandwich Timoshenko beams, made of functionally graded materials with two edge cracked, using the finite element method and linear elastic fracture mechanic theory. The FG beam consists of 50 layers, located symmetrically to the neutral plane, whose material properties distribution change along the beam thickness, accor...

full text

Vibration and Static Analysis of Functionally Graded Porous Plates

This research deals with free vibration and static bending of a simply supported functionally graded (FG) plate with the porosity effect. Material properties of the plate which are related to its change are position-dependent. Governing equations of the FG plate are obtained by using the Hamilton’s principle within first-order shear deformation plate theory. In solving the problem, the Navier s...

full text

Free Vibration of Functionally Graded Beams with Piezoelectric Layers Subjected to Axial Load

This paper studies free vibration of simply supported functionally graded beams with piezoelectric layers subjected to axial compressive loads. The Young's modulus of beam is assumed to be graded continuously across the beam thickness. Applying the Hamilton’s principle, the governing equation is established. Resulting equation is solved using the Euler’s Equation. The effects of the constituent...

full text

Disk Vibration Analysis of Functionally Graded Materials

Perforated discs have many applications in different parts of industry. By making such disks of functionally graded materials, more capabilities can be obtained from them. Vibration analysis of these kinds of disks can help us make them more efficient. In this paper, modeling and evaluation of disk vibration of functionally graded materials with regard to thickness were carried out using Abaqus...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 12  issue 1

pages  -

publication date 2018-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023