Nonlinear Optical Absorption of Carbon Nanostructures Synthesized by Laser Ablation of Highly Oriented Pyrolytic Graphite in Organic Solvents
Authors
Abstract:
In this study, Highly Oriented Pyrolytic Graphite was ablated in various polar and nonpolar solvents by Q-switched neodymium: yttrium-aluminum-garnet laser (wavelength=1064 nm, frequency=2 kHz, pulse duration=240 ns). Then, the products were examined using Scanning Electron Microscopy and UV-Vis spectroscopy. The images showed that different carbon structures such as cauliflower-like structures in benzene, spiral integrated forms in toluene, organic integrated networks in hexane, and nanoparticles in ethanol were formed. In n-methyl-2-pyrrolidone (NMP), sheets and bulk deformed structures were seen. Also, in Dimethylacetamide, particles in different stages of growth could be detected. The nonlinear optical absorption (NLA) behaviors of the products were investigated by exposing them to a 532 nm nanosecond laser using the Z-scan technique. The saturated NLA coefficient, obtained from structures of NMP and hexane-based synthesized samples, are 1.1×10-8 and 2.4×10-8 cm W-1, respectively. The saturable absorption responses of these samples were switched to the reverse saturable absorption responses in the other synthesis mediums. The maximum nonlinear absorption coefficient of 10.2×10-8 cm W 1 was measured for spiral integrated superstructures, produced in the toluene medium.
similar resources
control of the optical properties of nanoparticles by laser fields
در این پایان نامه، درهمتنیدگی بین یک سیستم نقطه کوانتومی دوگانه(مولکول نقطه کوانتومی) و میدان مورد مطالعه قرار گرفته است. از آنتروپی ون نیومن به عنوان ابزاری برای بررسی درهمتنیدگی بین اتم و میدان استفاده شده و تاثیر پارامترهای مختلف، نظیر تونل زنی(که توسط تغییر ولتاژ ایجاد می شود)، شدت میدان و نسبت دو گسیل خودبخودی بر رفتار درجه درهمتنیدگی سیستم بررسی شده اشت.با تغییر هر یک از این پارامترها، در...
15 صفحه اولStudy of the growth of NiO on highly oriented pyrolytic graphite by X-ray absorption spectroscopy
In this work, we present a X-ray absorption spectroscopy (XAS) study of the growth of NiO on highly oriented pyrolytic graphite (HOPG). NiO as been grown by reactive evaporation of metallic Ni in an oxygen atmosphere (2× 10−5 Torr) at room temperature. We paid special attention to he study of the early stages of growth. Both, Ni 2p and O 1s core-level XAS spectra were measured. For large NiO co...
full textUFM observation of lattice defects in highly oriented pyrolytic graphite
Ultrasonic force microscopy (UFM) can be used to image the distribution of elastic modulus up to several tens of GPa, which is not possible by the force modulation mode using a soft cantilever of spring constant less than 1 N m‘. It was shown that by careful design of a piezoelectric transducer, together with a sample with small friction force, deflection vibration of the cantilever without tor...
full textInterface Properties of Organic para-Hexaphenyl/α-Sexithiophene Heterostructures Deposited on Highly Oriented Pyrolytic Graphite
It was recently reported, that heterostructures of para-hexaphenyl (p-6P) and α-sexithiophene (6T) deposited on muscovite mica exhibit the intriguing possibility to prepare lasing nanofibers of tunable emission wavelength. For p-6P/6T heterostructures, two different types of 6T emission have been observed, namely, the well-known red emission of bulk 6T crystals and additionally a green emission...
full textFemtosecond Laser Synthesis of Polymorphic Diamond from Highly Oriented Pyrolytic Graphite
We synthesized polymorphic diamond directly from highly oriented pyrolytic graphite (HOPG) using femtosecond laser driven shock wave without catalyst. A femtosecond laser pulse (wavelength: 800 nm, pulse width: 120 fs, intensity: 2×10 W/cm) was irradiated onto the HOPG surface in air. Crystalline structures of HOPG after the laser irradiation were analyzed using the synchrotron X-ray at the BL1...
full textScanning tunneling microscopy studies of carbon-oxygen reactions on highly oriented pyrolytic graphite
The oxidation of highly oriented pyrolytic graphite (HOPG) in air at elevated temperatures was studied by examination of the oxidized HOPG by scanning tunneling microscopy (STM). Etch pits of uniform size and monolayer depth were readily formed on preexisting defects or generated vacancies in the HOPG basal plane by heating freshly cleaved HOPG samples in air at 650 OC. The density of the pits ...
full textMy Resources
Journal title
volume 7 issue None
pages 113- 124
publication date 2013-08
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023