Nonlinear Modeling of Bolted Lap Jointed Structure with Large Amplitude Vibration of Timoshenko Beams
Authors
Abstract:
This paper aims at investigating the nonlinear behavior of a system which is consisting of two free-free beams which are connected by a nonlinear joint. The nonlinear system is modelled as an in-extensional beam with Timoshenko beam theory. In addition, large amplitude vibration assumption is taken into account in order to obtain exact results. The nonlinear assumption in the system necessities existence of the curvature-related and inertia-related nonlinearities. The nonlinear partial differential equations of motion for the longitudinal, transverse, and rotation are derived using the Hamilton’s principle. A set of coupled nonlinear ordinary differential equations are further obtained with the aid of Galerkin method. The frequency-response curves are presented in the section of numerical results to demonstrate the effect of the different dimensionless parameters. It is shown that the nonlinear bolted-lap joint structure exhibits a hardening-type behavior. Furthermore, it is found that by adding a nonlinear spring the system exhibits a stronger hardening-type behavior. In addition, it is found that the system shows nonlinear behavior even in the absence of the nonlinear spring due to the nonlocal nonlinearity assumption. Moreover, it is shown that considering different engineering beam theories lead to different results and it is found that the Euler-Bernoulli beam theory over-predict the resonance frequency of the structure by ignoring rotary inertia and shear deformation.
similar resources
Nonlinear Vibration Analysis of Piezoelectric Functionally Graded Porous Timoshenko Beams
In this paper, nonlinear vibration analysis of functionally graded piezoelectric (FGP) beam with porosities material is investigated based on the Timoshenko beam theory. Material properties of FG porous beam are described according to the rule of mixture which modified to approximate material properties with porosity phases. The Ritz method is used to obtain the governing equation which is then...
full textVibration Suppression of Timoshenko Beams with Embedded Piezoelectrics Using POF
This paper deals with the design of a periodic output feedback controller for a flexible beam structure modeled with Timoshenko beam theory, Finite Element Method, State space methods and embedded piezoelectrics concept. The first 3 modes are considered in modeling the beam. The main objective of this work is to control the vibrations of the beam when subjected to an external force. Shear piezo...
full textNonlocal DQM for Large Amplitude Vibration of Annular Boron Nitride Sheets on Nonlinear Elastic Medium
One of the most promising materials in nanotechnology such as sensors, actuators and resonators is annular Boron Nitride sheets (ABNSs) due to excelled electro-thermo-mechanical properties. In this study, however, differential quadrature method (DQM) and nonlocal piezoelasticity theory are used to investigate the nonlinear vibration response of embedded single-layered annular Boron Nitride shee...
full textModeling and Analysis of Smart Timoshenko Beams with Piezoelectric materials
In the present work, a finite element model is proposed to describe the response of isotropic and orthotropic beams with piezoelectric actuators due to applied mechanical loads as well as electrical load. The assumed field displacements of the beams are represented by First-order Shear Deformation Theory (FSDT), the Timoshenko beam theory. The equation of motion of the smart beam system is deri...
full textIsogeometric Analysis for Nonlinear Dynamics of Timoshenko Beams
The dynamics of beams that undergo large displacements is analyzed in frequency domain and comparisons between models derived by isogeometric analysis and p-FEM are presented. The equation of motion is derived by the principle of virtual work, assuming Timoshenko’s theory for bending and geometrical type of nonlinearity. As a result, a nonlinear system of second order ordinary differential equa...
full textNonlinear Vibrations of Timoshenko Beams Carrying a Concentrated Mass
Transverse vibrations of Timoshenko type beams carrying a concentrated mass have been investigated. Both ends of this mass-beam system have simply supports. Hamilton Principle has been used in order to derive equation of motion . For this coupled differential equations, approximately solutions have been searched by means of Method of Multiple Scales(a perturbation method). These solutions consi...
full textMy Resources
Journal title
volume 11 issue 1
pages 222- 235
publication date 2019-03-30
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023