Nonlinear Cable equation, Fractional differential equation, Radial point interpolation method, Meshless local Petrov – Galerkin, Stability analysis
Authors
Abstract:
The cable equation is one the most fundamental mathematical models in the neuroscience, which describes the electro-diffusion of ions in denderits. New findings indicate that the standard cable equation is inadequate for describing the process of electro-diffusion of ions. So, recently, the cable model has been modified based on the theory of fractional calculus. In this paper, the two dimensional time fractional nonlinear cable equation as an improved mathematical model in neuronal dynamics, is investigated numerically. An efficient and powerful computational technique based on the combination of time integration scheme and local weak form meshfree method has been formulated and implemented to solve the underlying problem. An implicit difference scheme with second order accuracy is used to discretize the model in the temporal direction. Then a meshless method based on the local Petrov-Galerkin technique is employed to fully discretize the model. The proposed numerical technique is performed to approximate the solutions of three examples. Presented results through the Tables and figures confirm the high efficiency and accuracy of the method.
similar resources
Axial buckling analysis of an isotropic cylindrical shell using the meshless local Petrov-Galerkin method
In this paper the meshless local Petrov-Galerkin (MLPG) method is implemented to study the buckling of isotropic cylindrical shells under axial load. Displacement field equations, based on Donnell and first order shear deformation theory, are taken into consideration. The set of governing equations of motion are numerically solved by the MLPG method in which according to a semi-inverse method, ...
full textNumerical Simulation of 1D Linear Telegraph Equation With Variable Coefficients Using Meshless Local Radial Point Interpolation (MLRPI)
In the current work, we implement the meshless local radial point interpolation (MLRPI) method to find numerical solution of one-dimensional linear telegraph equations with variable coefficients. The MLRPI method, as a meshless technique, does not require any background integration cells and all integrations are carried out locally over small quadrature domains of regular shapes, such as lines ...
full textMeshless Local Petrov-Galerkin Method for Elasto-Static Analysis of Thick-Walled Isotropic Laminated Cylinders
In this paper, one of the simplest and most regular members of the family of the Meshless Local Petrov-Galerkin (MLPG) methods; namely MLPG5, is applied to analyze the thick-walled isotropic laminated cylinders under elasto-static pressure. A novel simple technique is proposed to eliminate a very important difficulty of the meshless methods to deal with material discontinuities regarding to the...
full textMeshless Local Petrov-Galerkin (MLPG) Method for Convection-Diffusion Problems
Due to the very general nature of the Meshless Local Petrov-Galerkin (MLPG) method, it is very easy and natural to introduce the upwinding concept (even in multidimensional cases) in the MLPG method, in order to deal with convection-dominated flows. In this paper, several upwinding schemes are proposed, and applied to solve steady convectiondiffusion problems, in one and two dimensions. Even fo...
full textImposing boundary conditions in the meshless local Petrov–Galerkin method
A particular meshless method, named meshless local Petrov–Galerkin is investigated. To treat the essential boundary condition problem, an alternative approach is proposed. The basic idea is to merge the best features of two different methods of shape function generation: the moving least squares (MLS) and the radial basis functions with polynomial terms (RBFp). Whereas the MLS has lower computa...
full textMeshless Local Petrov-Galerkin Method in Anisotropic Elasticity
A meshless method based on the local Petrov-Galerkin approach is proposed for solution of static and elastodynamic problems in a homogeneous anisotropic medium. The Heaviside step function is used as the test functions in the local weak form. It is leading to derive local boundary integral equations (LBIEs). For transient elastodynamic problems the Laplace transfor technique is applied and the ...
full textMy Resources
Journal title
volume 7 issue None
pages 0- 0
publication date 2021-09
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023