Nonlinear analysis of radially functionally graded hyperelastic cylindrical shells with axially-varying thickness and non-uniform pressure loads based on perturbation theory

Authors

  • Hamed Gharooni Department of Mechanical Engineering, Shahrood University of Technology, Shahrood, Iran
  • Mehdi Ghannad Department of Mechanical Engineering, Shahrood University of Technology, Shahrood, Iran,
Abstract:

In this study, nonlinear analysis for thick cylindrical pressure vessels with arbitrary variable thickness made of hyperelastic functionally graded material properties in nearly incompressible state and clamped boundary conditions under non-uniform pressure loading is presented. Thickness and pressure of the shell are considered in axial direction by arbitrary nonlinear profiles. The FG material properties of nearly incompressible hyperelastic shell are graded in the radial direction with a power law distribution. Effective combination of shear deformation theory and match asymptotic expansion of perturbation theory are used to derived and solve the nonlinear governing equations, respectively. A numerical modelling based on finite element method is presented to validate the results of the current analytical solution. The effect of material constants, non-homogeneity index, geometry and pressure profiles on displacements, stresses and hydrostatic pressure distributions are illustrated for different hyperelastic material properties and case studies. This approach enables insight to the nature of the deformation and stress distribution through the thickness of rubber vessels and may offer the potential to study the mechanical functionality of blood vessels such as artificial or natural arteries in physiological pressure range.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Nonlinear analytical solution of nearly incompressible hyperelastic cylinder with variable thickness under non-uniform pressure by perturbation technique

In this paper, nonlinear analytical solution of pressurized thick cylindrical shells with variable thickness made of hyperelastic materials is presented. The governing equilibrium equations for the cylindrical shell with variable thickness under non-uniform internal pressure are derived based on first-order shear deformation theory (FSDT). The shell is assumed to be made of isotropic and homoge...

full text

Vibration analysis of functionally graded cylindrical shells with different boundary conditions subjected to thermal loads

In the present work, study of the vibration of a functionally graded (FG) cylindrical shell made up of stainless steel, zirconia, and nickel is presented. Free vibration analysis is presented for FG cylindrical shells with simply supported-simply supported and clamped–clamped boundary condition based on temperature independent material properties. The equations of motion are derived by Hamilton...

full text

vibration analysis of functionally graded cylindrical shells with different boundary conditions subjected to thermal loads

in the present work, study of the vibration of a functionally graded (fg) cylindrical shell made up of stainless steel, zirconia, and nickel is presented. free vibration analysis is presented for fg cylindrical shells with simply supported-simply supported and clamped–clamped boundary condition based on temperature independent material properties. the equations of motion are derived by hamilton...

full text

Stability Analysis of Laminated Cylindrical Shells under Combined Axial Compression and Non-Uniform External Pressure

This study investigates geometrical non-linear analysis of composite circular cylindrical shells under external pressure over part of their surfaces and also shells subjected to combined axial compression and triangular external pressure. Donnell non-linear shell theory along with first order shear deformation theory (FOSD) are adopted in the analysis. In the case of combined axial compression ...

full text

Vibration Analysis of Functionally Graded Spinning Cylindrical Shells Using Higher Order Shear Deformation Theory

In this paper the vibration of a spinning cylindrical shell made of functional graded material is investigated. After a brief introduction of FG materials, by employing higher order theory for shell deformation, constitutive relationships are derived. Next, governing differential equation of spinning cylindrical shell is obtained through utilizing energy method and Hamilton’s principle. Making ...

full text

Buckling of axially compressed thin cylindrical shells with functionally graded middle layer

Buckling of a simply supported three-layer circular cylindrical shell under axial compressive load is studied. The inner and outer layers of the shell are comprised of the same homogeneous and isotropic material, and the middle layer is made of an isotropic functionally graded (FG) material whose Young’s modulus varies either affinely or parabolically in the thickness direction from its value f...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 50  issue 2

pages  324- 340

publication date 2019-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023