non-divisibility for abelian groups

Authors

Abstract:

Throughout all groups are abelian. We say a group G is n-divisible if nG = G. If G has no non-zero n-divisible subgroups for all n>1 then we say that G is absolutely non-divisible. In the study of class C consisting   all absolutely non-divisible groups such as G, we come across the sub groups T_p(G) = the sum of all p-divisible subgroups and rad_p(G) = the intersection of all p^nG. The properties of these two subgroups have been studied in detail. For classes D_p consisting all p-divisible groups,  F_p consisting all groups with T_p(G) = 0, we prove that (D_p, F_p) is a torsion theory. The class C is closed uder any direct sums and any direct products. If H and G/H are in C then we show that G is in C. Also it is proved that G is in C if and only if rad_p(G)= 0 for any p, if and only if Hom(cup_pD_p, G) = 0. Finally, a more characterization is given for subgroups of  Q(rational numbers) which belongs to C. Various examples are also persented to illustrate the results.  

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Non-Abelian Sequenceable Groups Involving ?-Covers

A non-abelian finite group is called sequenceable if for some positive integer , is -generated ( ) and there exist integers such that every element of is a term of the -step generalized Fibonacci sequence , , , . A remarkable application of this definition may be find on the study of random covers in the cryptography. The 2-step generalized sequences for the dihedral groups studi...

full text

On non-normal non-abelian subgroups of finite groups

‎In this paper we prove that a finite group $G$ having at most three‎ ‎conjugacy classes of non-normal non-abelian proper subgroups is‎ ‎always solvable except for $Gcong{rm{A_5}}$‎, ‎which extends Theorem 3.3‎ ‎in [Some sufficient conditions on the number of‎ ‎non-abelian subgroups of a finite group to be solvable‎, ‎Acta Math‎. ‎Sinica (English Series) 27 (2011) 891--896.]‎. ‎Moreover‎, ‎we s...

full text

Divisibility Properties of Group Rings over Torsion-free Abelian Groups

Let G be a torsion-free abelian group of type (0, 0, 0, . . . ) and R an integrally closed integral domain with quotient field K. We show that every divisorial ideal (respectively, t-ideal) J of the group ring R[X;G] is of the form J = hIR[X;G] for some h ∈ K[X;G] and a divisorial ideal (respectively, t-ideal) I of R. Consequently, there are natural monoid isomorphisms Cl(R) ∼= Cl(R[X;G]) and C...

full text

Non-Abelian Pseudocompact Groups

Here are three recently-established theorems from the literature. (A) (2006) Every non-metrizable compact abelian group K has 2|K|-many proper dense pseudocompact subgroups. (B) (2003) Every non-metrizable compact abelian group K admits 22 |K| -many strictly finer pseudocompact topological group refinements. (C) (2007) Every non-metrizable pseudocompact abelian group has a proper dense pseudoco...

full text

First non-abelian cohomology of topological groups II

In this paper we introduce a new definition of the first non-abelian cohomology of topological groups.  We relate the cohomology of a normal subgroup $N$ of a topological group $G$ and the quotient $G/N$ to the cohomology of $G$. We get the inflation-restriction exact sequence. Also, we obtain a seven-term exact cohomology sequence up to dimension 2. We give an interpretation of the first non-a...

full text

Finite $p$-groups and centralizers of non-cyclic abelian subgroups

A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is ‎cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq‎ ‎Z(G)$‎. ‎In this paper‎, ‎we give a complete classification of‎ ‎finite $mathcal{CAC}$-$p$-groups‎.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 2

pages  0- 0

publication date 2022-05

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023