New spatial clustering-based models for optimal urban facility location considering geographical obstacles

Authors

  • Jamal Shahrabi Industrial Engineering Department, Amirkabir University of Technology, Tehran, Iran
  • Maryam Javadi Isfahan Municipality Information & Communication Technology, Department of Software Engineering, University of Payam Noor, Tehran, Iran
Abstract:

The problems of facility location and the allocation of demand points to facilities are crucial research issues in spatial data analysis and urban planning. It is very important for an organization or governments to best locate its resources and facilities and efficiently manage resources to ensure that all demand points are covered and all the needs are met. Most of the recent studies, which focused on solving facility location problems by performing spatial clustering, have used the Euclidean distance between two points as the dissimilarity function. Natural obstacles, such as mountains and rivers, can have drastic impacts on the distance that needs to be traveled between two geographical locations. While calculating the distance between various supply chain entities (including facilities and demand points), it is necessary to take such obstacles into account to obtain better and more realistic results regarding location-allocation. In this article, new models were presented for location of urban facilities while considering geographical obstacles at the same time. In these models, three new distance functions were proposed. The first function was based on the analysis of shortest path in linear network, which was called SPD function. The other two functions, namely PD and P2D, were based on the algorithms that deal with robot geometry and route-based robot navigation in the presence of obstacles. The models were implemented in ArcGIS Desktop 9.2 software using the visual basic programming language. These models were evaluated using synthetic and real data sets. The overall performance was evaluated based on the sum of distance from demand points to their corresponding facilities. Because of the distance between the demand points and facilities becoming more realistic in the proposed functions, results indicated desired quality of the proposed models in terms of quality of allocating points to centers and logistic cost. Obtained results show promising improvements of the allocation, the logistics costs and the response time. It can also be inferred from this study that the P2D-based model and the SPD-based model yield similar results in terms of the facility location and the demand allocation. It is noted that the P2D-based model showed better execution time than the SPD-based model. Considering logistic costs, facility location and response time, the P2D-based model was appropriate choice for urban facility location problem considering the geographical obstacles.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

competitive facility location using clustering of customers

competitive facility location focus on locating facilities by considering the fact of competition in businesses, so every facilities try to reach their reachable shares through competition. reachable shares have an indirect relation with the distance of facilities to the customer and a direct relation with the attractiveness of the facility. attractiveness of any facility is depend on variety o...

full text

Optimal Facility-Location

Dr. Christoph Witzgall, the honoree of this Symposium, can count among his many contributions to applied mathematics and mathematical operations research a body of widely-recognized work on the optimal location of facilities. The present paper offers to non-specialists a sketch of that field and its evolution, with emphasis on areas most closely related to Witzgall's research at NBS/NIST.

full text

Algorithm for Spatial Clustering with Obstacles

In this paper, we propose an efficient clustering technique to solve the problem of clustering in the presence of obstacles. The proposed algorithm divides the spatial area into rectangular cells. Each cell is associated with statistical information that enables us to label the cell as dense or non-dense. We also label each cell as obstructed (i.e. intersects any obstacle) or non-obstructed. Th...

full text

a new approach to credibility premium for zero-inflated poisson models for panel data

هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...

15 صفحه اول

Optimal Capacities in Discrete Facility Location Design Problem

Network location models comprise one of the main categories of location models. These models have various applications in regional and urban planning as well as in transportation, distribution, and energy management. In a network location problem, nodes represent demand points and candidate locations to locate the facilities. If the links network is unchangeably determined, the problem will be ...

full text

A Clustering-Based Approach to the Capacitated Facility Location Problem1

This research develops a clustering-based location-allocation method to the Capacitated Facility Location Problem (CFLP), which provides an approximate optimal solution to determine the location and coverage of a set of facilities to serve the demands of a large number of locations. The allocation is constrained by facility capacities – different facilities may have different capacities and the...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 10  issue 1

pages  -

publication date 2014-04-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023