New Insight on Deformation of Walnut/Ceramic Proppant Pack under Closure Stress in Hydraulic Fracture: Numerical Investigation
Authors
Abstract:
This study is an attempt to investigate the mechanical behavior of proppant packs deforming under compression loading. A generalized confined compression test (CCT) was simulated in the present study to investigate the deformation of walnut/ceramic proppants against compression. In this way, the CCT was simulated using ABAQUS explicit code. Unlike ordinary CCT, we obtained permeability of compressed packs through image processing of deformed packs. It was observed that a pack with small particles could markedly withstand deformation, however, at the expense of having lower permeability. Also, selecting a proper proppant pack strongly depends on the prevailing stress regime, where at low stress (<30 MPa) uniform walnut pack has the same permeability as a medley of walnut/ceramic pack. But, at greater stresses (> 40 Mpa), the pack with more ceramic is the best choice. Mixtures of walnut and ceramic proppants showed greatly strength improvement compared to similar cases with pure walnut granules. As a result, making use of such packing is highly recommended due to significant mechanical stability and also being of lower price compared to packs of pure ceramic granules.
similar resources
Numerical Investigation of the Time-Dependent and the Proppant Dominated Stress Shadow Effects in a Transverse Multiple Fracture System and Optimization
In this paper, a numerical study is conducted to investigate the stress shadow effects (stress reorientation and change) during hydraulic fracturing in a transverse multiple fracture system. A numerical model is used for the numerical study. It is a 3D model and can simulate the fracture operation from injection begin to full closure (fracture contact). Therefore, there is no need to assume the...
full textNumerical Investigation of Circular Plates Deformation under Air Blast Wave
In the current research the maximum deflection of circular plates made of AA5010 and AA1100 alloys under blast load was investigated. Shock waves were produced by exploding a spherical charge in different distances from the center of plates. The ABAQUS software uses conwep equation for blast loading analysis. It was found the results of these simulations have about 30% to 40% inaccuracy in comp...
full textNumerical Investigation of Hydraulic Characteristics Effective on Vertical Drop
The drops are used to control the descents, stabilize the bed level, and control the upstream water level in sloping channels with less slope than the ground slope. The current study presents a numerical analysis of hydraulic characteristics in the vertical drop using computational fluid dynamics. At first, the laboratory models were used for verification and choosing the best model of turbule...
full textNumerical Analysis on the Optimization of Hydraulic Fracture Networks
The clear understanding of hydraulic fracture network complexity and the optimization of fracture network configuration are important to the hydraulic fracturing treatment of shale gas reservoirs. For the prediction of hydraulic fracture network configuration, one of the problems is the accurate representation of natural fractures. In this work, a real natural fracture network is reconstructed ...
full textNumerical Analysis on the Stability of Hydraulic Fracture Propagation
The formation of dense spacing fracture network is crucial to the hydraulic fracturing treatment of unconventional reservoir. However, one difficulty for fracturing treatment is the lack of clear understanding on the nature of fracture complexity created during the treatment. In this paper, fracture propagation is numerically investigated to find the conditions needed for the stable propagation...
full textMy Resources
Journal title
volume 53 issue 2
pages 245- 251
publication date 2019-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023