Neural Networks in Electric Load Forecasting:A Comprehensive Survey
Authors
Abstract:
Review and classification of electric load forecasting (LF) techniques based on artificial neuralnetworks (ANN) is presented. A basic ANNs architectures used in LF reviewed. A wide range of ANNoriented applications for forecasting are given in the literature. These are classified into five groups:(1) ANNs in short-term LF, (2) ANNs in mid-term LF, (3) ANNs in long-term LF, (4) Hybrid ANNs inLF, (5) ANNs in Special applications of LF. The major research articles for each category are brieflydescribed and the related literature reviewed. Conclusions are made on future research directions.
similar resources
neural networks in electric load forecasting:a comprehensive survey
review and classification of electric load forecasting (lf) techniques based on artificial neuralnetworks (ann) is presented. a basic anns architectures used in lf reviewed. a wide range of annoriented applications for forecasting are given in the literature. these are classified into five groups:(1) anns in short-term lf, (2) anns in mid-term lf, (3) anns in long-term lf, (4) hybrid anns inlf,...
full textNeural Networks in Electric Load Forecasting: A Comprehensive Survey
Review and classification of electric load forecasting (LF) techniques based on artificial neural networks (ANN) is presented. A basic ANNs architectures used in LF reviewed. A wide range of ANN oriented applications for forecasting are given in the literature. These are classified into five groups: (1) ANNs in short-term LF, (2) ANNs in mid-term LF, (3) ANNs in long-term LF, (4) Hybrid ANNs in...
full textReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
full textReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
full textMedium Term Electric Load Forecasting Using TLFN Neural Networks
This paper develops medium term electric load forecasting using neural networks, based on historical series of electric load, economic and demographic variables. The neural network chosen for this work is the Time Lagged Feedforward Network (TLFN), which combines conventional network topology (multilayer perceptron) with good handling of time dependencies by means of gamma memory. This is a ver...
full textInduction Motor Electric Parameters Estimation Using Artificial Neural Networkds and its Application in industrial Load Modeling
Load modeling is widely used in power system studies. Two types of modeling, namely, static and dynamic, are employed. The current industrial practice is the static modeling. Static modelss are algebraic equations of active and reactive power changes in terms of voltage and frequency deviations. In this paper, a component based on static modeling is employed in which the aggregate model is deri...
full textMy Resources
Journal title
volume 3 issue 10
pages 37- 50
publication date 2014-09-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023