Nerve Growth Factor and the Trans-differentiation of Human Dental Pulp Stem Cells Into Cholinergic-like Neurons

Authors

  • Hatef Ghasemi Hamidabadi Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.; Immunogenetic Research Center, Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
  • Maria Zahiri The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.; Department of Anatomical Sciences, School of Medical Sciences, Bushehr University of Medical Sciences, Bushehr, Iran.
  • Maryam Nazm Bojnordi Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
  • Nourollah Rezaei Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.; Immunogenetic Research Center, Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
  • Rafieh Alizadeh ENT and Head & Neck Research Center and Department, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran.
  • Shahram Darabi Cellular and Molecular Research Center, Qazvin University of Medical Science, Qazvin, Iran.
  • Taki Tiraihi Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran.
Abstract:

Introduction: Cell therapy has been widely considered as a therapeutic approach for neurodegenerative diseases and nervous system damage. Cholinergic neurons as one of the most important neurons that play a significant role in controlling emotions, mobility, and autonomic systems. In this study, human dental pulp stem cells (hDPSCs) were differentiated into the cholinergic neurons by β-mercaptoethanol in the preinduction phase and also by the nerve growth factor (NGF) in the induction phase.  Methods: The hDPSCs were evaluated for CD73, CD31, CD34, and Oct-4. Concentration-time relationships for NGF were assessed by evaluating the viability rate of cells and the immune response to nestin, neurofilament 160, microtubule-associated protein-2, and choline acetyltransferase. Results: The hDPSCs had a negative response to CD34 and CD31. The optimal dose for the NGF was 50 ng/mL seven days after the induction when the highest percentage of expressing markers for the cholinergic neurons (ChAT) was detected. Conclusion: The results of this study provided a method for producing cholinergic neurons by hDPSCs, which can be used in cytotherapy for degenerative diseases of the nervous system and also spinal cord injury.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Transdifferentiation of Human Dental Pulp Stem Cells Into Oligoprogenitor Cells

Introduction: The nerve fibers in central nervous system are surrounded by myelin sheet  which is formed by oligodendrocytes. Cell therapy based on oligodendrocytes and their precursors transplantation can hold a promising alternative treatment for myelin sheet repair in demyelinating diseases. Methods: Human Dental Pulp Stem Cells (hDPSCs) are noninvasive, autologous and easy available s...

full text

Induction of Bone Marrow Stromal Cells into Cholinergic-Like Cells by Nerve Growth Factor

Background: Bone marrow stromal cells (BMSC) are used as a source for cell therapy in different model for neurological disorder such as stroke and spinal cord injury. However, the transdifferentiation of BMSC into cholinergic phenotype requires more investigation. Methods: BMSC were isolated from adult rats, pre-induced with β-mercaptoethanol (BME) and followed by nerve growth factor (NGF) indu...

full text

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

full text

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

full text

Differentiation of dental pulp stem cells into islet-like aggregates.

The post-natal dental pulp tissue contains a population of multipotent mesenchymal progenitor cells known as dental pulp stromal/stem cells (DPSCs), with high proliferative potential for self-renewal. In this investigation, we explored the potential of DPSCs to differentiate into pancreatic cell lineage resembling islet-like cell aggregates (ICAs). We isolated, propagated, and characterized DPS...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 10  issue 6

pages  7- 7

publication date 2019-11

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023