NBO analysis and theoretical thermodynamic study of (5,5) & (6,6) armchair carbon nanotubes via DFT method
Authors: not saved
Abstract:
In the present work, the structural and electronic properties, and conductivity of (5,5) and (6,6) Single Walled Carbon Nanotubes in the ground state have done by using the Hartree-Fock and density functional theory DFT-B3LYP/6-31G* level. Delocalization of charge density between the bonding or lone pair and antibonding orbitals calculated by NBO (natural bond orbital) analysis. These methods are used as a tool to determine structural characterization CNTs in the gas phase. The total electronic energy, dipole moment, natural atomic orbital energies, charge density, density of state (DOS), highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) energies, HOMO-LUMO energy bond gaps, the global index includes hardness (η), electronegativity (χ), electrophilicity index (w), chemical softness (S) and electronic chemical potential (μ) were calculated. We have reported our investigation on the conductivity and electronic structures of pure (5,5) and (6,6) SWCNTs. The calculated HOMO-LUMO energy bond gap show that charge density transfer occurs within the molecule and the results indicate that the conductivity of the CNTs, and also the semi conductivity could be justified.
similar resources
nbo analysis and theoretical thermodynamic study of (5,5) & (6,6) armchair carbon nanotubes via dft method
in the present work, the structural and electronic properties, and conductivity of (5,5) and (6,6) single walled carbon nanotubes in the ground state have done by using the hartree-fock and density functional theory dft-b3lyp/6-31g* level. delocalization of charge density between the bonding or lone pair and antibonding orbitals calculated by nbo (natural bond orbital) analysis. these methods a...
full textThe investigation of interaction between Cyclophosphamide and single walled Carbon Nanotubes with DFT and NBO
The molecular structure of Cyclophosphamide (N, N-bis(2-chloroethyl)-1,3,2-oxazaphosphinan-2-amine 2-oxide is the anti cancer drug and used to treat cancer and immune diseases) and SWCNTswere calculated by the B3LYP density functional model with 6-311G* basis set with Gaussian 09program. The nanotube used in this study, includes 120 C atoms (5, 5) type. The NBO analysisshowed there is a hyperco...
full textDFT studies of COOH tip-functionalized zigzag and armchair single wall carbon nanotubes
Structure and energy calculations of pristine and COOH-modified model single wall carbon nanotubes (SWCNTs) of different length were performed at B3LYP/6-31G* level of theory. From 1 to 9 COOH groups were added at the end of the nanotube. The differences in structure and energetics of partially and fully functionalized SWCNTs at one end of the nanotube are observed. Up to nine COOH groups could...
full textAnalysis of band-gap formation in squashed armchair carbon nanotubes
The electronic properties of deformed armchair carbon nanotubes are modeled using constraint free density functional tight binding molecular dynamics simulations. Independent from CNT diameter, deforming path can be divided into three regimes. In the first regime, the nanotube deforms with negligible force. In the second one, there is significantly more resistance to deforming with the force be...
full textTheoretical comparison of thermodynamic parameters, NMR analysis, electronic properties of Boron Nitride and Aluminum Nitride nanotubes
In this research, geometrical structures of armchair single walled boron nitride nanotube (SWBNNT) and armchair single walled aluminum nitride nanotube (SWAlNNT) were optimized by Density Functional Theory (DFT) in the gas phase, both having the same length of 5 angstrom and n=9, m=9. B3LYP/6-31G* level of theory have been used to determine and compare electronic properties, n...
full textMy Resources
Journal title
volume 5 issue 1
pages 53- 60
publication date 2016-04-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023