Natural convection from horizontal noncircular annulus partially filled with porous sleeve
Authors
Abstract:
In this paper natural convection heat transfer within a two-dimensional, horizontal, concentric cam shape cylinders that is partially filled with a fluid saturated porous medium has been investigated. both cylinder are kept at constant and uniform temperatures with the outer cylinder being subjected relatively lower than the inner one. In addition the forchheimer and brinkman effect are taken into consideration inside the porous sleeve. furthermore, the local thermal equilibrium condition is take into account. the porosity factor is considered to be uniform and constant with ε = 0.9. the main objective of this study is to examine the effects of stream line shape, thermal conductivity ratio (ks/kf) and the porous layer thickness on the bouyancy induced flow motion under steady state condition. these effects are studied using the following dimensionless parameters: Ra = 104-106, Da = 10-3-10-5. The results show’s that Nusselt number is affected mostly by porous sleeve thickness and Rayleigh number respectively.
similar resources
Laminar Free Convection of Nanofluid Flow in Horizontal Porous Annulus
A numerical study has been carried out to investigate the heat transfer by natural convection of nanofluid taking Cu as nanoparticles and the water as based fluid in a three dimensional annulus enclosure filled with porous media (silica sand) between two horizontal concentric cylinders with 12 annular fins of 2.4mm thickness attached to the inner cylinder under steady state conditions. The gove...
full textInvestigation of Natural Convection in a Vertical Cavity Filled with a Anisotropic Porous Media
In present paper, a numerical analysis for a rectangular cavity filled with a anisotropic porous media has been studied. It is assumed that the horizontal walls are adiabatic and impermeable, while the side walls of the cavity are maintained at constant temperatures and concentrations. The buoyancy force that induced the fluid motion are assumed to be cooperative. In the two extreme cases o...
full textNumerical Study of Natural Convection in an Inclined Cavity with Partially Active Side Walls Filled with Cu-water Nanofluid
The buoyancy-driven fluid flow and heat transfer in a square cavity with partially active side walls filled with Cu-water nanofluid is investigated numerically. The active parts of the left and the right side-walls of the cavity are maintained at temperatures Th and Tc, respectively, with Th>Tc. The enclosure’s top and bottom walls, as well as, the inactive parts of its side walls are kept insu...
full textUnsteady Natural Convection in a Square Cavity Partially Filled with Porous Media Using a Thermal Non-Equilibrium Model
Unsteady natural convection and heat transfer in a square cavity partially filled with porous media using a thermal non-equilibrium model is studied in this paper. The left vertical wall is maintained at a constant hot temperature Th and the right vertical wall is maintained at a constant cold temperature Tc, while the horizontal walls are adiabatic. The governing equations are obtained by appl...
full textUnsteady flow through porous medium induced by periodically rotating half-filled horizontal concentric cylindrical annulus wit
This communication investigates the unsteady flow of viscous incompressible fluid through porous medium induced by periodically heated half filled concentric cylindrical annulus placed horizontally. The boundaries of the annulus are rotating periodically with different angular velocities in the same or opposite directions about their common axis. The governing equations are expressed in terms o...
full textNumerical Study of Natural Convection in a Square Cavity Filled with a Porous Medium Saturated with Nanofluid
Steady state natural convection of Al2O3-water nanofluid inside a square cavity filled with a porous medium is investigated numerically. The temperatures of the two side walls of the cavity are maintained at TH and TC, where TC has been considered as the reference condition. The top and the bottom horizontal walls have been considered to be insulated i.e., non-conducting and impermeable to mass...
full textMy Resources
Journal title
volume 19 issue 2
pages 46- 63
publication date 2018-09-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023