Natural Convection at Different Prandtl Numbers in Rectangular Cavities with a Fin on the Cold Wall
author
Abstract:
The natural convection in differentially heated rectangular cavities with a fin attached to the cold wall was investigated numerically. The top and the bottom horizontal walls of the cavities were insulated while their left and the right vertical walls were maintained at a constant temperature Th and Tc, respectively with Th > Tc. The governing equations written in terms of the primitive variables were solved numerically using the finite volume method while the velocity and pressure fields were coupled using the SIMPLER algorithm. Using the developed code effects of pertinent parameters such as length and location of fin, aspect ratio of the enclosure, Rayleigh number, and Prandtl number on heat transfer and fluid flow in the enclosure were investigated. The results showed that for the cavity filled with water, at high Rayleigh numbers, a longer fin placing at the middle of the right wall has more remarkable effect on the heat transfer inside the cavity. Also, it was observed that at low Rayleigh numbers, the effect of fin on heat transfer enhancement in low Prandtl numbers is more than that in high Prandtl numbers. Moreover, it was found that the fin has more effect for narrow enclosures.
similar resources
Transient Natural Convection Flow on an Isothermal Vertical Wall at High Prandtl Numbers: Second-Order Approximation
The method of matched asymptotic expansions, which has been used in previous studies of steady natural convection flow, is extended here to transient natural convection flow at high Prandtl number (Pr). Second-order expansion solutions, valid for large Prandtl numbers, are presented for the transient natural convection flow near a vertical surface which undergoes a step change in temperature. T...
full textRayleigh-Bénard convection with rotation at small Prandtl numbers.
We present experimental and theoretical results near the onset of the Rayleigh-Bénard convection with rotation about a vertical axis in a fluid with a Prandtl number sigma close to 0.18. In the experiment we used a H2-Xe gas mixture with a separation ratio Psi=0.22 and a Lewis number L=1.22 at various pressures and dimensionless rotation rates Omega up to 400. On the basis of a standard weakly ...
full textTransient Natural Convection in a Rectangular Cavity Filled with Porous Medium Heated Discretely at Vertical Wall
Numerical analysis is presented for transient buoyancy-induced natural convection from discrete heating inside a two-dimensional rectangular enclosure filled with porous medium. The study has been made for Rayleigh numbers of 100, 1000 and 10000 with an aspect ratio of 2. The left vertical wall is heated discretely to a constant high temperature and the right wall is cooled to a constant low te...
full textConvection-driven spherical shell dynamos at varying Prandtl numbers
Context. Stellar convection zones are characterized by vigorous high-Reynolds number turbulence at low Prandtl numbers. Aims. We study the dynamo and differential rotation regimes at varying levels of viscous, thermal, and magnetic diffusion. Methods. We perform three-dimensional simulations of stratified fully compressible magnetohydrodynamic convection in rotating spherical wedges at various ...
full textThermal convection for large Prandtl numbers.
The Rayleigh-Bénard theory by Grossmann and Lohse [J. Fluid Mech. 407, 27 (2000)] is extended towards very large Prandtl numbers Pr. The Nusselt number Nu is found here to be independent of Pr. However, for fixed Rayleigh numbers Ra a maximum in the Nu(Pr) dependence is predicted. We moreover offer the full functional dependences of Nu(Ra,Pr) and Re(Ra,Pr) within this extended theory, rather th...
full textOn the nature of fluctuations in turbulent Rayleigh–Bénard convection at large Prandtl numbers
We report experimental results for the power spectra, variance, skewness and kurtosis of temperature fluctuations in turbulent Rayleigh–Bénard convection (RBC) of a fluid with Prandtl number Pr= 12.3 in cylindrical samples with aspect ratios Γ (diameter D over height L) of 0.50 and 1.00. The measurements were primarily for the radial positions ξ = 1− r/(D/2)= 1.00 and ξ = 0.063. In both cases, ...
full textMy Resources
Journal title
volume 2 issue 4
pages 58- 69
publication date 2013-03
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023