Nanoparticles Retention Potential of Multichannel Hollow Fiber Drinking Water Production Membrane

Authors

  • Gaelle Georges Aix Marseille Université, CNRS, Centrale Marseille, Institut FRESNEL, UMR 7249, 13013, Marseille, France
  • Laure Siozade Aix Marseille Université, CNRS, Centrale Marseille, Institut FRESNEL, UMR 7249, 13013, Marseille, France
  • Yvan Wyart Aix Marseille Université, CNRS, Centrale Marseille, M2P2 UMR 7340, Equipe Procédés Membranaires (EPM), Europôle de l’Arbois, BP80, Pavillon Laennec, Hall C, 13545 Aix en Provence Cedex, France
Abstract:

This study aims to investigate the potential of nanoparticle retention of ultrafi ltration (UF) multichannel hollow fiber membrane. Filtration experiments of fl uorescent silica nanoparticles (NPs) (10 and 100 nm) and CdTe quantum dots (1.5 nm) suspensions were carried out under diff erent operating conditions to analyze the retention rate (RT), the fouling zone and the membrane productivity. Fouling mechanism occurring during the experiment has been correlated with the distribution profi les of NPs obtained during the membrane autopsy after fi ltration by Confocal Laser Scanning Microscopy (CLSM). Results show that large NPs are totally retained on the membrane surface. Medium NPs pass through the membrane at the beginning of the fi ltration and are gradually stopped in the membrane skin before forming a deposit on the membrane surface. The retention rate of small NPs also increases over time and an in-depth fouling of the membrane (skin + support) has been identifi ed. Mass balance and determination of NPs surface deposit thickness, in the case of a filtration cake, determined by CLSM and scanning electron microscopy (SEM) allowed the estimation of NPs amount trapped in the membrane structure (skin or support) and have been compared to the fouling resistance observed during the filtration run. The CLSM analysis of the membrane on its section presents, in that study, a signifi cant interest because of the high accuracy of the measures: 538.16 nm compared to the 5000 nm reported in a previous study.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

A Robust Mixed-Conducting Multichannel Hollow Fiber Membrane Reactor

To accelerate the commercial application of mixed-conducting membrane reactor for catalytic reaction processes, a robust mixed-conducting multichannel hollow fiber (MCMHF) membrane reactor was constructed and characterized in this work. The MCMHF membrane based on reduction-tolerant and CO2-stable SrFe0.8Nb0.2O3-δ (SFN) oxide not only possesses a good mechanical strength, but also has a high ox...

full text

Hollow Fiber Membrane Bioreactor for COD Biodegradation of Tapioca Wastewater

The present work studied the application of membrane bioreactor (MBR) for tapioca wastewater processing that contained chemical oxygen demand (COD) ranging from 4000-9000 mg/L. A preliminary study was initially conducted in order to evaluate membrane performance with respect to its flux with MLSS concentration ranging from 4,500 to 10,500 mg/L. It was clear that fouling was observed during the ...

full text

Gas Permeation Modeling through a Multilayer Hollow Fiber Composite Membrane

In this study, a time-dependent 2D axisymmetric model of a multilayer hollow fiber composite membrane for gas separation is proposed. In spite of the common multilayer membranes, which a dense layer coated on a porous support layer and subjected into the feed stream, here, the porous support is exposed to the feed gas. In this regard, the governing equations of species transport are developed f...

full text

Polyvinylidene Fluoride Hollow Fiber Membrane Contactor Incorporating Surface Modifying Macromolecule for Carbon Dioxide Stripping from Water

Porous surface modified polyvinylidene ï‌‚uoride (PVDF) hollow fiber membranes are fabricated through a dry-wet phased inversion process. Surface modifying macromolecules (SMM) (1 wt. %) are used as additives in the spinning dope. The performance of the surface modified membrane in contactor application for CO2 stripping from water is assessed through the fabricated gas–liquid membrane contacto...

full text

CO2 Capture by Dual Hollow Fiber Membrane Systems

In this paper, a system for efficient removal of carbon dioxide by hollow fiber membranes is proposed. The system is compact, and it is very useful for application in the offshore energy industries. In particular, it is used to removing CO2 from the exhaust of power generation facilities on offshore platforms.The proposed dual membrane contactor contains two types of membranes (polypropylene me...

full text

Enhanced High Oxygen Permeation of Mixed-Conducting Multichannel Hollow Fiber Membrane via Surface Modified Porous Layer

The oxygen permeation performance of Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) mixed-conducting multichannel hollow fiber (MCMHF) membranes was improved by surface modification via spin-spraying of a La0.6Sr0.4CoO3−δ (LSC) porous layer. At 1173 K, the oxygen permeation flux of the modified membranes was clearly enhanced and reached 9.68 mL·cm−2·min−1, which is a remarkable high value in the field of mixe...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 2

pages  74- 84

publication date 2018-04-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023