Multiscale Evaluation of the Nonlinear Elastic Properties of Carbon Nanotubes Under Finite Deformation
Authors
Abstract:
This paper deals with the calculation of the elastic properties for single-walled carbon nanotubes (SWCNTs) under axial deformation and hydrostatic pressure using the atomistic-based continuum approach and the deformation mapping technique. A hyperelastic model based on the higher-order Cauchy-Born (HCB) rule being applicable at finite strains and accounting for the chirality and material nonlinearity is presented. Mechanical properties of several carbon nanotubes (CNTs) are computed and compared with the existing theoretical results and a good agreement is observed. Moreover, by comparison with atomistic calculations, it is found that the present model can reproduce the energetics of axially deformed CNTs. The model is then adopted to study the dependence of the elastic properties on chirality, radius and strain which yields an upper bound on the stability limit of axially and circumferentially stretched nanotubes. The influence of chirality is found to be more prominent for smaller tubes and as the diameter increases, the anisotropy induced by finite deformations gets nullified. It is discerned that the constitutive properties of the CNT can vary with deformation in a nonlinear manner. It is also found that the CNT displays a martial softening behavior at finite tensile strains and a hardening behavior at slightly compressive strains.
similar resources
investigation of the electronic properties of carbon and iii-v nanotubes
boron nitride semiconducting zigzag swcnt, $b_{cb}$$n_{cn}$$c_{1-cb-cn}$, as a potential candidate for making nanoelectronic devices was examined. in contrast to the previous dft calculations, wherein just one boron and nitrogen doping configuration have been considered, here for the average over all possible configurations, density of states (dos) was calculated in terms of boron and nitrogen ...
15 صفحه اولThe Attitude of Variation of Elastic Modules in Single Wall Carbon Nanotubes: Nonlinear Mass-Spring Model
The examination of variation of elastic modules in single wall carbon nanotubes (SWCNTs) is the aim of this paper. Full nonlinear spring-like elements are employed to simulate specific atomic structures in the commercial code ABAQUS. Carbon atoms are attached to each node as a mass point using atomic mass of carbon atoms. The influence of dimensions such as variation of length, diameter, aspect...
full textcontrol of the optical properties of nanoparticles by laser fields
در این پایان نامه، درهمتنیدگی بین یک سیستم نقطه کوانتومی دوگانه(مولکول نقطه کوانتومی) و میدان مورد مطالعه قرار گرفته است. از آنتروپی ون نیومن به عنوان ابزاری برای بررسی درهمتنیدگی بین اتم و میدان استفاده شده و تاثیر پارامترهای مختلف، نظیر تونل زنی(که توسط تغییر ولتاژ ایجاد می شود)، شدت میدان و نسبت دو گسیل خودبخودی بر رفتار درجه درهمتنیدگی سیستم بررسی شده اشت.با تغییر هر یک از این پارامترها، در...
15 صفحه اولElastic Properties of Carbon Nanotubes and Nanoropes
Elastic properties of carbon nanotubes and nanoropes are investigated using an empirical force-constant model. For single and multi-wall nanotubes the elastic moduli are shown to be insensitive to details of the structure such as the helicity, the tube radius and the number of layers. The tensile Young’s modulus and the torsion shear modulus calculated are comparable to that of the diamond, whi...
full textSubbands in Carbon Nanotubes under Radial Deformation
Carbon nanotubes, which consist of only carbon atoms, were first discovered by Iijima [1] and can be thought of as a single layer of graphite that is wrapped into a cylinder. The cylindrical nanotubes are very stable and are regarded as the strongest fibers ever; nanotubes are extremely rigid to distortions along the tube axis whereas they are very flexible to those perpendicular to the axis [2...
full textAnalysis of Nonlinear Vibrations for Multi-walled Carbon Nanotubes Embedded in an Elastic Medium
Nonlinear free vibration analysis of double-walled carbon nanotubes (DWCNTs) embedded in an elastic medium is studied in this paper based on classical (local) Euler-Bernoulli beam theory. Using the averaging method, the nonlinear free vibration responses of DWCNTs are obtained. The result is compared with the obtained results from the harmonic balance method for single-walled carbon nanotubes (...
full textMy Resources
Journal title
volume 50 issue 1
pages 60- 80
publication date 2017-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023