Multidimensional Dynamic Modeling of Milk Ultrafiltration Using Neuro-Fuzzy Method and a Hybrid Physical Model

Authors: not saved
Abstract:

Prediction of the dynamic crossflow ultrafiltration rate of a protein solution such as milk poses a complex non-linear problem as the filtration rate has a strong dependence on both the solution physicochemical conditions and the operating conditions. As a result, the development of general physics-based models has proved extremely challenging. In this study an alternative dynamic neuro-fuzzy model for milk ultrafiltration that describes the variation in dynamic permeate flux decline with temperature, transmembrane pressure (TMP), fat percentage, pH and molecular weight cut off (MWCO) has been developed with the experimental data of the pilot spiral wound membrane test rig. By increasing the temperature, TMP, and pH the permeate flux is increased, and by increasing fat concentration the permeate flux is decreased. The MWCO variation indicates a paradoxical permeate flux. Additionally, a hybrid physical model for dynamic prediction of total resistance in the milk ultrafiltration by combination of two neuro-fuzzy (ANFIS) models and a physical model (BLA model) is developed. By increasing the TMP and fat concentration, the total resistance is increased. But by increasing the pH and temperature, the total resistance is decreased. Also, MWCO variation indicates a paradoxical total resistance value.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

A Neuro-Fuzzy Model for a Dynamic Prediction of Milk Ultrafiltration Flux and Resistance

A neuro-fuzzy modeling tool (ANFIS) has been used to dynamically model cross flow ultrafiltration of milk. It aims to predict permeate flux and total hydraulic resistance as a function of transmembrane pressure, pH, temperature, fat, molecular weight cut off, and processing time. Dynamic modeling of ultrafiltration performance of colloidal systems (such as milk) is very important for design...

full text

a neuro-fuzzy model for a dynamic prediction of milk ultrafiltration flux and resistance

a neuro-fuzzy modeling tool (anfis) has been used to dynamically model cross flow ultrafiltration of milk. it aims to predict permeate flux and total hydraulic resistance as a function of transmembrane pressure, ph, temperature, fat, molecular weight cut off, and processing time. dynamic modeling of ultrafiltration performance of colloidal systems (such as milk) is very important for designing ...

full text

the use of appropriate madm model for ranking the vendors of mci equipments using fuzzy approach

abstract nowadays, the science of decision making has been paid to more attention due to the complexity of the problems of suppliers selection. as known, one of the efficient tools in economic and human resources development is the extension of communication networks in developing countries. so, the proper selection of suppliers of tc equipments is of concern very much. in this study, a ...

15 صفحه اول

Forecasting Stock Exchange Market Using Hybrid Neuro Fuzzy Model

This paper proposes a hybrid approach based on neuro fuzzy model and emotional learning for prediction of stock exchange market. Neuro fuzzy models are powerful in modeling and forecasting highly nonlinear and complex time series. The emotional Learning, which is successfully used in bounded rational decision making, is introduced as an appropriate method to achieve particular goals in the pred...

full text

A method for design of a hybrid neuro-fuzzy control system based on behavior modeling

It is known that control signals from a fuzzy logic controller are determined by a response behavior of a controlled object rather than its analytical models. That implies that the fuzzy controller could yield a similar control result for a set of plants with a similar dynamic behavior. This idea leads to modeling of a plant with unknown structure by defining several types of dynamic behavior, ...

full text

Dynamic Modeling of the Electromyographic and Masticatory Force Relation Through Adaptive Neuro-Fuzzy Inference System Principal Dynamic Mode Analysis

Introduction: Researchers have employed surface electromyography (EMG) to study the human masticatory system and the relationship between the activity of masticatory muscles and the mechanical features of mastication. This relationship has several applications in food texture analysis, control of prosthetic limbs, rehabilitation, and teleoperated robots. Materials and Methods: In this paper, w...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue 2

pages  3- 22

publication date 2008-04-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023