Multi-objective planning of charging stations considering benefits of distribution company and charging stations owners
Authors
Abstract:
In recent years, electric vehicles have attracted significant attention due to environmental issues. Charging stations installation requires a systematic consideration of relevant issues such as determination of the location and size of charging stations. On the other hand, it is necessary to encourage private investors to invest in charging stations installations and to provide proper conditions for them so that they can profit from their investment. In this paper, the fast charging station (FCS) planning problem is modeled as a mixed integer nonlinear programming (MINLP), in which the objective function of distribution company (DISCO) and FCS owner (FCSO) have been considered, separately. In the proposed model, the location and size of FCSs as well as the price of transacted energy between DISCO and FCSO are determined, such that the objective functions of DISCO and FCSO are optimized. In the proposed method, queuing theory and user equilibrium based traffic assignment model are used to determine the size of FCSs. Then, the problem of multi-objective planning of FCSs has been investigated, considering the objectives of DISCO and FCSO. In addition, the final solution is chosen from the Pareto front solutions based on the economic and operational indices. Finally, the efficiency of the proposed method is demonstrated by numerical results.
similar resources
Multi-Objective Distribution Network Expansion Incorporating Electric Vehicle Charging Stations
Abstract: The paper develops a multi-objective planning framework for distribution network expansion with electric vehicle charging stations. Charging loads are modeled in the first place, and then integrated into the optimal distribution network expansion planning. The formulation is extended from the single objective of the economic cost minimization into three objectives with the additional ...
full textPlanning Electric Vehicle Charging Stations Based on User Charging Behavior
Jinyang Li∗, Xiaoshan Sun∗, Qi Liu∗, Wei Zheng†, Hengchang Liu∗ and John Stankovic‡ ∗School of Computer Science and Technology University of Science and Technology of China, Anhui, China Email: {ljyustc, sxs1166, liuqi100}@mail.ustc.edu.cn, [email protected] †Comprehend (Suzhou) Information Technology Inc. Suzhou, Jiangsu Email: [email protected] ‡Department of Computer Science University o...
full textPlacement of EV Charging Stations - Balancing Benefits among Multiple Entities
This paper studies the problem of multi-stage placement of electric vehicle (EV) charging stations with incremental EV penetration rates. A nested logit model is employed to analyze the charging preference of the individual consumer (EV owner), and predict the aggregated charging demand at the charging stations. The EV charging industry is modeled as an oligopoly where the entire market is domi...
full textOptimal Charging Operation of Battery Swapping and Charging Stations with QoS Guarantee
Motivated by the urgent demand for the electric vehicle (EV) fast refueling technologies, battery swapping and charging stations (BSCSs) are envisioned as a promising solution to provide timely EV refueling services. However, inappropriate battery charging operation in BSCSs can not only incur unnecessary high charging cost but also threaten the reliability of the power grid. In this paper, we ...
full textStudy of a New Quick-Charging Strategy for Electric Vehicles in Highway Charging Stations
Abstract: To solve the problem, because of which conventional quick-charging strategies (CQCS) cannot meet the requirements of quick-charging for multiple types of electric vehicles (EV) on highways where vehicle inflow is excessive, this paper proposed a new quick-charging strategy (NQCS) for EVs: on the premise of not affecting those EVs being charged, the remaining power of the quick-chargin...
full textDemand Prediction and Placement Optimization for Electric Vehicle Charging Stations
Due to the environmental impact of fossil fuels and high variability in their prices, there is rising interest in adopting electric vehicles (EVs) by both individuals and governments. Despite the advances in vehicle efficiency and battery capacity, a key hurdle is the inherent interdependence between EV adoption and charging station deployment–EV adoption (and hence, charging demand) increases ...
full textMy Resources
Journal title
volume 9 issue 3
pages 41- 55
publication date 2020-09
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023