Multi-Damage Detection for Steel Beam Structure

Authors

  • Benyamin Mohebi Assistant Professor, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran
  • Gholamreza Ghodrati Amiri Professor, Center of Excellent for Fundamental Studies in Structural Engineering, School of Civil Engineering Iran University of Science and Technology, Tehran, Iran
  • Mohsen Ghafory-Ashtiany Professor, Structural Department, International Institute of Earthquake Engineering and Seismology, Tehran, Iran
  • Reza Farokhzad Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
Abstract:

Damage detection has been focused by researchers because of its importance in engineering practices. Therefore, different approaches have been presented to detect damage location in structures. However, the higher the accuracy of methods is required the more complex deliberations. Based on the conventional studies, it was observed that the damage locations and its size are associated with dynamic parameters of the structures. The main objective of this research is to present a sophisticated approach to detect the damage location using multi-objective genetic algorithm (MOGA) along with modified multi-objective genetic algorithm (MMOGA). In this approach natural frequencies are considered as the main dynamic parameters to detect the damage. The finite element method (FEM) is utilized to validate the accuracy of the results extracted from the natural frequencies analysis with consideration of the beams with different support conditions. Accordingly the results emphasize the high accuracy of the proposed method with the maximum error of 5%.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Damage Detection of Beam Structure Using Frequency Response Functions

The global dynamic behavior of structure can affect by the Presence of damage. Hence detection and quantification of damage has a greater significance in the context of structural health monitoring. This paper is based on frequency response function for detecting the presence and severity of damage in the structure. The variations in frequency response function is taken as a feature to detect d...

full text

Damage Detection in Beam-like Structures using Finite Volume Method

In this paper the damage location in beam like-structure is determined using static and dynamic data obtained using finite volume method. The change of static and dynamic displacement due to damage is used to establish an indicator for determining the damage location. In order to assess the robustness of the proposed method for structural damage detection, three test examples including a static...

full text

Damage Detection of Axially Loaded Beam: A Frequency-Based Method

The present study utilizes an analytical method to formulate the three lowest modal frequencies of axially-loaded notched beam through both crack location and load level in a specific format that can be used in existing frequency-based crack-identification methods. The proposed formula provides a basis to shift into two states, one with axial loading and the other without any loading whatsoever...

full text

Modeling Curvature Damage Surface For Damage Detection In Cantilever Beam

A damage detection method is presented for the identification and quantification of damage. The proposed method uses finite element method to extract modal parameters of cracked and intact cantilever beam. The damage is simulated by fracture mechanics concept by introducing cracked elements at different locations with predetermined magnitude of depth. The curvature response function, function o...

full text

Applicability of damage indices for detection of cracking in steel moment connections

Analytical detection of cracking in connections of steel moment resisting frames using simple damage indices is important since these cracks are not visible unless the connections are uncovered. In this paper, applicability of three cumulative damage indices for detection of cracking in a cover plate welded moment connection is investigated. The damage indices considered in this study are based...

full text

islanding detection methods for microgrids

امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 2

pages  25- 44

publication date 2016-08-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023