Morphological, structural and photoresponse characterization of ZnO nanostructure films deposited on plasma etched silicon substrates

Authors

  • Bassam Abdallah Atomic Energy Commission, Department of Physics, P. O. Box 6091, Damascus, Syria
  • Feras Nounou Atomic Energy Commission, Department of Physics, P. O. Box 6091, Damascus, Syria
Abstract:

ZnO nanostructure films were deposited by radio frequency (RF) magnetron sputtering on etched silicon (100) substrates using dry Ar/SF6 plasma, at two etching times of 5 min and 30 min, and on non etched silicon surface. Energy dispersive X-ray (EDX) technique was employed to investigate the elements contents for etched substrates as well as ZnO films, where it is found to be stoichiometric. Surface and growth evolution of films were explored by scanning electron microscope (SEM) images and found to have morphological development from spherical forms into nanowires with increasing substrate etching time. 2D atomic force microscope (AFM) images clarify this modification of the morphology and roughness values are deduced. Structural study was investigated using X-ray diffraction (XRD) patterns. The films had (002) preferential orientation with various etching time substrates. Optical characterization illustrated a decrease of reflectance with the morphological modification. Photoresponse measurement has been investigated and correlated with the crystallinity.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Morphological Characterization of Combustion Deposited Diamond Crystals and Films

Single crystals and polycrystalline diamond films of several thicknesses were deposited using oxygen/acetylene combustion flame technique. The substrate used was pure polycrystalline molybdenum subjected to mechanical polishing. Quality and microstructural characteristic of diamond produced were investigated using X-Ray diffraction, Raman Spectroscopy, Scanning and Transmission Electron Microsc...

full text

Electrical, optical and structural properties of ZnO nanorods thin films deposited over ZnO substrates

ZnO thin films with grain morphology were obtained over glass substrates using the sol–gel method; these films were used as substrates to grow ZnO nanorods using chemical bath deposition (CBD) technique. The transmittance percentage of two films was over 85% and the electrical resistivity decreased when ZnO nanorods were grown over the ZnO thin film with grain morphology. A laser is incident at...

full text

Characterization of polymer-like thin films deposited on silicon and glass substrates using PECVD method

Polymer-like thin films have been deposited on glass and silicon substrates at temperatures in the range 300–673 K, by a plasma enhanced chemical vapor deposition (PECVD) method using thiophene (C H S) as a precursor. A power with radio 4 4 frequency (13.56 MHz) was applied for the ignition of the plasma, and hydrogen and Ar(argon) were used as the bubbler and the carrier gases, respectively. I...

full text

Morphological and structural characterization of single-crystal ZnO nanorod arrays on flexible and non-flexible substrates

We report a facile synthesis of zinc oxide (ZnO) nanorod arrays using an optimized, chemical bath deposition method on glass, PET and Si substrates. The morphological and structural properties of the ZnO nanorod arrays were investigated using various techniques such as field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) measurements, which revealed the formation of d...

full text

A Study of ZnO Buffer Layer Effect on Physical Properties of ITO Thin Films Deposited on Different Substrates

The improvement of the physical properties of Indium Tin Oxide (ITO) layers is quite advantageous in photovoltaic applications. In this study the ITO film is deposited by RF sputtering onto p-type crystalline silicon (c-Si) with (100) orientation, multicrystalline silicon (mc-Si), and glass substrates coated with ZnO and annealed in vacuum furnace at 400°C. Electrical, optical, structural a...

full text

Thermal Oxidation Times Effect on Structural and Morphological Properties of Molybdenum Oxide Thin Films Grown on Quartz Substrates

Molybdenum oxide (α-MoO)thin films were prepared on quartz and silicon substrates by thermal oxidation of Mo thin films deposited using DC magnetron sputtering method. The influence of thermal oxidation times ranging from 60-240 min on the structural and morphological properties of the preparedfilms was investigated using X-ray diffraction, Atomic force microscopy and Fourier transform infrared...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 10  issue 1

pages  185- 197

publication date 2020-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023