More Equienergetic Signed Graphs
Authors
Abstract:
The energy of signed graph is the sum of the absolute values of the eigenvalues of its adjacency matrix. Two signed graphs are said to be equienergetic if they have same energy. In the literature the construction of equienergetic signed graphs are reported. In this paper we obtain the characteristic polynomial and energy of the join of two signed graphs and thereby we give another construction of unbalanced, noncospectral equieneregtic signed graphs on $n geq 8$ vertices.
similar resources
More skew-equienergetic digraphs
Two digraphs of same order are said to be skew-equienergetic if their skew energies are equal. One of the open problems proposed by Li and Lian was to construct non-cospectral skew-equienergetic digraphs on n vertices. Recently this problem was solved by Ramane et al. In this paper, we give some new methods to construct new skew-equienergetic digraphs.
full textD - Equienergetic Self - Complementary Graphs
The D-eigenvalues {μ1, μ2, . . . , μn} of a graph G are the eigenvalues of its distance matrix D and form the D-spectrum of G denoted by specD(G) . The D-energy ED(G) of the graph G is the sum of the absolute values of its D-eigenvalues. We describe here the distance spectrum of some self-complementary graphs in the terms of their adjacency spectrum. These results are used to show that there ex...
full textNew skew equienergetic oriented graphs
Let $S(G^{sigma})$ be the skew-adjacency matrix of the oriented graph $G^{sigma}$, which is obtained from a simple undirected graph $G$ by assigning an orientation $sigma$ to each of its edges. The skew energy of an oriented graph $G^{sigma}$ is defined as the sum of absolute values of all eigenvalues of $S(G^{sigma})$. Two oriented graphs are said to be skew equienergetic iftheir skew energies...
full textOpen problems for equienergetic graphs
The energy of a graph is equal to the sum of the absolute values of its eigenvalues. Two graphs of the same order are said to be equienergetic if their energies are equal. We point out the following two open problems for equienergetic graphs. (1) Although it is known that there are numerous pairs of equienergetic, non-cospectral trees, it is not known how to systematically construct any such pa...
full textSmall and Not so Small Equienergetic Graphs
We show that, contrary to the claims of several authors that there exists no equienergetic graphs on seven vertices, there exists 21 sets of noncospectral, equienergetic graphs on seven vertices. We also give the number and cardinality of sets of equienergetic connected graphs on eight, nine and ten vertices, and equienergetic trees and chemical trees on up to 22 vertices. Finally, we construct...
full textGraphs equienergetic with edge-deleted subgraphs
The energy of a graph is the sum of the absolute values of the eigenvalues of its adjacency matrix. Two graphs are equienergetic if they have the same energy. We construct infinite families of graphs equienergetic with edge-deleted subgraphs.
full textMy Resources
Journal title
volume 2 issue 2
pages 169- 179
publication date 2017-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023