Monte Carlo calculations of dose distribution for the treatment of gastric cancer with proton therapy

Authors

Abstract:

Proton therapy is a common form of external radiation therapy based on the manipulation of Bragg peak of this beam, it can treat the tumor by delivering high levels of doses to it, while protecting surrounding healthy tissues against radiation. In this work, the dose distribution of proton and secondary particles such as neutrons, photons, electrons and positrons in gastric cancer proton therapy have been studied. For this purpose, using a single-energy proton beam, the suitable energy range has been calculated for treating a tumor in the gastric tissue of a male adult male MRD-UF phantom. Then, the SOBP of the matrix method has been constructed using the dosimetry results. The primary and secondary doses were also examined in 12 surrounding healthy organs. The results show that the primary dose in healthy organs is much smaller than the dose received by the tumor. Although the secondary dose is small, but its amount in the stomach, spleen, pancreas and left kidney is higher than those in other organs. The results of the study show that the proton therapy of gastric cancer can represent an almost ideal radiation therapy by measuring the risk levels of secondary particle dose, in particular, the equivalent dose of neutrons.    

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

A comparison of arrived dose to the heart in the treatment of breast cancer in different modes of proton radiation by proton therapy using Monte Carlo simulation

Introdution: Today, the Advantages of radiation therapy by charged particles is indicated for the treatment of cancerous. During the passing of proton beam in the body tissues, secondary particles produce, which penetrate to the body healthy tissues and cause damage. The aim of this research was calculating the Spread out Bragg Peak for covering the breast cancer and investigating arrived dose ...

full text

Dose Assessment of Eye and Its Components in Proton Therapy by Monte Carlo Method

Introduction Proton therapy is used to treat malignant tumors such as melanoma inside the eye. Proton particles are adjusted according to various parameters such as tumor size and position and patient’s distance from the proton source. The purpose of this study was to assess absorbed doses in eyes and various tumors found in the area of sclera and choroid and the adjacent tissues in radiotherap...

full text

Radial dose functions of GZP6 intracavitary brachytherapy 60Co sources: treatment planning system versus Monte Carlo calculations

Background: The Monte Carlo (MC) method is not only used for dose calculations around brachytherapy sources but also for benchmarking treatment planning systems (TPS) calculations. Materials and Methods: Three 60Co sources of GZP6 brachytherapy unit were simulated using MCNP4C MC Code. The radial dose functions were calculated by MC method and GZP6 TPS and were compared. Results: There was a go...

full text

Assessment of The Relation Between Energy Of Primary Protons And Undesired Neutron Dose During Proton Therapy By Monte Carlo Method

Introduction: High-energy beams of protons offer significant advantages for the treatment of deepseated local tumors. Their physical depth-dose distribution in tissue is characterized by a small entrance dose and a distinct maximum -Bragg peak- near the end of range with a sharp fall-off at the distal edge. Alongside its advantages there are some point that they need to meticul...

full text

Monte Carlo Simulation for Evaluation of Dose Distribution in Proton Therapy

This paper presents dose calculation in proton therapy using Monte Carlo method and comparison with experimental data obtained at TOHOKU University’s cyclotron and isotope center in Japan. In this way, two Monte Carlo codes, FLUKA and MCNPX, has been employed to calculate percentage depth dose, lateral dose profiles, isodose curves and secondary particles production for proton pencil and broad ...

full text

Monte Carlo Calculations Supporting Patient Plan Verification in Proton Therapy

Patient's treatment plan verification covers substantial amount of the quality assurance (QA) resources; this is especially true for Intensity-Modulated Proton Therapy (IMPT). The use of Monte Carlo (MC) simulations in supporting QA has been widely discussed, and several methods have been proposed. In this paper, we studied an alternative approach from the one being currently applied clinically...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 4

pages  19- 28

publication date 2018-09

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023