Modules with Noetherian second spectrum
author
Abstract:
Let $R$ be a commutative ring and let $M$ be an $R$-module. In this article, we introduce the concept of the Zariski socles of submodules of $M$ and investigate their properties. Also we study modules with Noetherian second spectrum and obtain some related results.
similar resources
modules with noetherian second spectrum
let $r$ be a commutative ring and let $m$ be an $r$-module. in this article, we introduce the concept of the zariski socles of submodules of $m$ and investigate their properties. also we study modules with noetherian second spectrum and obtain some related results.
full textNoetherian Modules
In a finite-dimensional vector space, every subspace is finite-dimensional and the dimension of a subspace is at most the dimension of the whole space. Unfortunately, the naive analogue of this for modules and submodules is wrong: (1) A submodule of a finitely generated module need not be finitely generated. (2) Even if a submodule of a finitely generated module is finitely generated, the minim...
full textDo Noetherian Modules Have Noetherian Basis Functions?
In Bishop-style constructive algebra it is known that if a module over a commutative ring has a Noetherian basis function, then it is Noetherian. Using countable choice we prove the reverse implication for countable and strongly discrete modules. The Hilbert basis theorem for this specific class of Noetherian modules, and polynomials in a single variable, follows with Tennenbaum’s celebrated ve...
full textThe length of Artinian modules with countable Noetherian dimension
It is shown that if $M$ is an Artinian module over a ring $R$, then $M$ has Noetherian dimension $alpha $, where $alpha $ is a countable ordinal number, if and only if $omega ^{alpha }+2leq it{l}(M)leq omega ^{alpha +1}$, where $ it{l}(M)$ is the length of $M$, $i.e.,$ the least ordinal number such that the interval $[0, it{l}(M))$ cannot be embedded in the lattice of all su...
full textNONNIL-NOETHERIAN MODULES OVER COMMUTATIVE RINGS
In this paper we introduce a new class of modules which is closely related to the class of Noetherian modules. Let $R$ be a commutative ring with identity and let $M$ be an $R$-module such that $Nil(M)$ is a divided prime submodule of $M$. $M$ is called a Nonnil-Noetherian $R$-module if every nonnil submodule of $M$ is finitely generated. We prove that many of the properties of Noetherian modul...
full textUpper bounds for noetherian dimension of all injective modules with Krull dimension
In this paper we give an upper bound for Noetherian dimension of all injective modules with Krull dimension on arbitrary rings. In particular, we also give an upper bound for Noetherian dimension of all Artinian modules on Noetherian duo rings.
full textMy Resources
Journal title
volume 1 issue 1
pages 19- 30
publication date 2013-11-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023