Modified Photochemical Properties of Mitoxantrone by Plasmonic Photothermal Response of Hollow Gold Nanoshells
Authors
Abstract:
Introduction: Mitoxantrone (MX) has been introduced as a photosensitizer drug. However, due to some side effects, the widespread use of this drug has been confronted with some limitations. Hollow gold nanoshells (HGN) have attracted considerable attention due to their interesting photochemical features that can use as nanocarrier. In this paper, the thermal response of MX and the use of this property for thermal effects during the photodynamic process by MX-conjugated HGN were investigated. Material and Methods: After optimizing the synthesis of ultimate nanostructure, the characteristics of pharmacological agents including MX, HGN, methoxy polyethylene glycol (mPEG)-HGN, and MX-mPEG-HGN were determined. Then, the thermal response of MX was determined at 0-50°C. Finally, by applying light irradiation with a non-coherent source at a wavelength of 670 nm and exposures of 0 to 50 j/cm2, the profile release and temperature variation in MX-mPEG-HGN were determined. Results: The zeta potentials of HGN and MX were negative, which resulted in electrostatic repulsion between them. In order to solve this challenge, the surface modification of HGN with mPEG was performed, resulting in the chemical bonding of the drug with the nanostructures and increasing the stability of the final nanostructure. With increasing temperature, the optical density of the drug at 660 nm significantly increased, which is an effective induction of photodynamic effect. Conclusion: In this study, we used mPEG-HGN as the nanocarrier for MX. Also, the thermal behavior of MX was recognized as an important factor in increasing temperature that could improve the photodynamic process.
similar resources
In Vitro Investigation into Plasmonic Photothermal Effect of Hollow Gold Nanoshell Irradiated with Incoherent Light
Introduction: Hollow gold nanoshells (HAuNS) are one of the most attractive nanostructures for biomedical applications due to their interesting physicochemical properties. This study sought to evaluate the plasmonic photothermal effect of HAuNS irradiated with incoherent light on melanoma cell line. Materials and Methods: After the synthesis of nanostructures, the temperature changes of HAuNS ...
full textcontrol of the optical properties of nanoparticles by laser fields
در این پایان نامه، درهمتنیدگی بین یک سیستم نقطه کوانتومی دوگانه(مولکول نقطه کوانتومی) و میدان مورد مطالعه قرار گرفته است. از آنتروپی ون نیومن به عنوان ابزاری برای بررسی درهمتنیدگی بین اتم و میدان استفاده شده و تاثیر پارامترهای مختلف، نظیر تونل زنی(که توسط تغییر ولتاژ ایجاد می شود)، شدت میدان و نسبت دو گسیل خودبخودی بر رفتار درجه درهمتنیدگی سیستم بررسی شده اشت.با تغییر هر یک از این پارامترها، در...
15 صفحه اولEffect of number density on optimal design of gold nanoshells for plasmonic photothermal therapy
Despite much research efforts being devoted to the design optimization of metallic nanoshells, no account is taken of the fact that the number of the nanoshells that can be delivered to a given cancerous site vary with their size. In this paper, we study the effect of the nanoshell number density on the absorption and scattering properties of a gold-nanoshell ensemble exposed to a broadband nea...
full textOptimization of plasmonic heating by gold nanospheres and nanoshells.
Gold nanoparticles have strong and tunable absorption peaks in their optical extinction spectra, a phenomenon that has recently been exploited to generate localized heating in the vicinity of these particles. However the optimum particle geometry and illumination regime to maximize these effects appears not to have been previously examined in any detail. Here we show that the interplay between ...
full textOptical properties of multilayer-polyelectrolyte films with incorporated gold nanomaterials (solid nanoparticles and hollow nanoshells)
The growth of various multilayer‐polymer multilayer‐nanoparticle films was successfully achieved. Multilayer‐polymer multilayer‐nanoparticle films with 1, 3, and 5 polymer layers between nanoparticle layers exhibit significantly different optical properties due to the differences in magnitude of particle plasmon coupling. These film systems were also successfully extended to hollow gold nanosh...
full textSynthesis and Evaluation of Gold Nanoparticles/Nanorods to Use in Plasmonic Photothermal Therapy
Introduction: Photothermal therapy is a method of cancer treatment that plasmonic nanoparticles are used to convert infrared light into local heat. Due to the plasmonic properties of gold nanoparticles, this compound was used as a contrast agent. The aim of this study was to synthesize gold nanoparticles with different conjugations for photothermal therapy. Methods: This research was an experi...
full textMy Resources
Journal title
volume 16 issue 1
pages 56- 63
publication date 2019-01-01
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023