Modified degenerate Carlitz's $q$-bernoulli polynomials and numbers with weight ($alpha ,beta $)
Authors
Abstract:
The main goal of the present paper is to construct some families of the Carlitz's $q$-Bernoulli polynomials and numbers. We firstly introduce the modified Carlitz's $q$-Bernoulli polynomials and numbers with weight ($_{p}$. We then define the modified degenerate Carlitz's $q$-Bernoulli polynomials and numbers with weight ($alpha ,beta $) and obtain some recurrence relations and other identities. Moreover, we derive some correlations with the modified Carlitz's $q$-Bernoulli polynomials with weight ($alpha ,beta $), the modified degenerate Carlitz's $q$-Bernoulli polynomials with weight ($alpha ,beta $), the Stirling numbers of the first kind and second kind.
similar resources
On the weighted degenerate Carlitz q-Bernoulli polynomials and numbers
In this paper, by using the p-adic q-integral on Zp which was defined by Kim, we define the weighted Carlitz q-Bernoulli polynomials and investigate some identities of these polynomials. In particular, we define the weighted degenerate Carlitz’s q-Bernoulli polynomials and numbers and give some interesting properties that are associated with these numbers and polynomials. AMS subject classifica...
full textOn the q - Bernoulli Numbers and Polynomials with Weight α
and Applied Analysis 3 The purpose of this paper is to derive a new concept of higher-order q-Bernoulli numbers and polynomials with weight α from the fermionic p-adic q-integral on Zp. Finally, we present a systemic study of some families of higher-order q-Bernoulli numbers and polynomials with weight α. 2. Higher Order q-Bernoulli Numbers with Weight α Let β ∈ Z and α ∈ N in this paper. For k...
full textA Note on the Modified q - Bernoulli Numbers and Polynomials with Weight α
and Applied Analysis 3 we derive some interesting identities and relations on the modified q-Bernoulli numbers and polynomials. 2. The Modified q-Bernoulli Numbers and Polynomials with Weight α In this section, we assume α ∈ Q. Now, we define the modified q-Bernoulli numbers with weight α B̃ α n,q as follows:
full textq-BERNOULLI NUMBERS AND POLYNOMIALS ASSOCIATED WITH GAUSSIAN BINOMIAL COEFFICIENT
Let q be regarded as either a complex number q ∈ C or a p-adic number q ∈ Cp. If q ∈ C, then we always assume |q| < 1. If q ∈ Cp, we normally assume |1− q|p < p − 1 p−1 , which implies that q = exp(x log q) for |x|p ≤ 1. Here, | · |p is the p-adic absolute value in Cp with |p|p = 1 p . The q-basic natural number are defined by [n]q = 1−q 1−q = 1 + q + · · · + q , ( n ∈ N), and q-factorial are a...
full textA Note on Partially Degenerate Bernoulli Numbers and Polynomials
In this paper, we consider the partially degenerate Bernoulli numbers and polynomials of the first kind and the second kind and investigate some properties of these numbers and polynomials.
full textA Note on Degenerate Hermite Poly–bernoulli Numbers and Polynomials
In this paper, we introduce a new class of degenerate Hermite poly-Bernoulli polynomials and give some identities of these polynomials related to the Stirling numbers of the second kind. Some implicit summation formulae and general symmetry identities are derived by using different analytical means and applying generating functions. These results extend some known summations and identities of d...
full textMy Resources
Journal title
volume 8 issue 2
pages 135- 144
publication date 2017-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023