Modeling of Methane Hydrate Decomposition by Using Chemical Affinity

Authors

  • Farshad Varaminian Faculty of Chemical, Gas and Petroleum Engineering,, Semnan University, Pardis No. 1, Semnan, I.R. IRAN
  • Zohreh Abbasi nia Faculty of Chemical, Gas and Petroleum Engineering,, Semnan University, Pardis No. 1, Semnan, I.R. IRAN
Abstract:

In this work, experimental kinetics data of methane hydrate decomposition at temperatures ranging from 272.15 to 276.15 K and at pressures ranging from 10 to 30 bars were modeled by using chemical affinity. This model proposed a macroscopic model which is independent of any intermediate mechanism like heat or mass transfer. The results show there is good agreement with experimental data. Also the two parameters of model were calculated and correlation coefficient of model is higher than 0.9.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

modeling of methane hydrate decomposition by using chemical affinity

in this work, experimental kinetics data of methane hydrate decomposition at temperatures ranging from 272.15 to 276.15 k and at pressures ranging from 10 to 30 bars were modeled by using chemical affinity. this model proposed a macroscopic model which is independent of any intermediate mechanism like heat or mass transfer. the results show there is good agreement with experimental data. also t...

full text

Prediction of Structural Changes in Gas Hydrate for Methane and Ethane Mixture by Using Tangent Plane Distance Minimization

Abstract:  In this study, the change in the crystalline structure of gas hydrate was predicted for ternary mixture of methane-ethane-water. For this purpose, the tangent plane distance (TPD) minimization method was used. First, the calculations were performed for the binary mixtures of methane-water and ethane-water as the gas and liquid phases. The results show that for a binary mixture of th...

full text

1-D Modeling of Hydrate Decomposition in Porous Media

This paper describes a one-dimensional numerical model for natural gas production from the dissociation of methane hydrate in hydrate-capped gas reservoir under depressurization and thermal stimulation. Some of the hydrate reservoirs discovered are overlying a free-gas layer, known as hydrate-capped gas reservoirs. These reservoirs are thought to be easiest and probably the first type of hydrat...

full text

Seismic AVO analysis of methane hydrate structures

Marine seismic data from the Blake Outer Ridge offshore Florida show strong “bottom simulating reflections” (BSR) associated with methane hydrate occurence in deep marine sediments. We use a detailed amplitude versus offset (AVO) analysis of these data to explore the validity of models which might explain the origin of the bottom simulating reflector. After careful preprocessing steps, we deter...

full text

Pore-network study of methane hydrate dissociation.

A two-dimensional pore-network model based on invasion percolation is used to study the patterns obtained from the release of methane during the dissociation of methane hydrates (without including dissociation kinetics) caused by a sudden pressure reduction in the system below the hydrate equilibrium pressure. The concept of the critical gas saturation S(gc) (volume fraction of the gas phase at...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 29  issue 1

pages  125- 131

publication date 2010-03-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023