Mixed Roman domination and 2-independence in trees
author
Abstract:
Let $G=(V, E)$ be a simple graph with vertex set $V$ and edge set $E$. A {em mixed Roman dominating function} (MRDF) of $G$ is a function $f:Vcup Erightarrow {0,1,2}$ satisfying the condition that every element $xin Vcup E$ for which $f(x)=0$ is adjacentor incident to at least one element $yin Vcup E$ for which $f(y)=2$. The weight of anMRDF $f$ is $sum _{xin Vcup E} f(x)$. The mixed Roman domination number $gamma^*_R(G)$ of $G$ isthe minimum weight among all mixed Roman dominating functions of $G$. A subset $S$ of $V$ is a 2-independent set of $G$ if every vertex of $S$ has at most one neighbor in $S$. The minimum cardinality of a 2-independent set of $G$ is the 2-independence number $beta_2(G)$. These two parameters are incomparable in general, however, we show that if $T$ is a tree, then $frac{4}{3}beta_2(T)ge gamma^*_R(T)$ and we characterize all trees attaining the equality.
similar resources
A characterization of trees with equal Roman 2-domination and Roman domination numbers
Given a graph $G=(V,E)$ and a vertex $v in V$, by $N(v)$ we represent the open neighbourhood of $v$. Let $f:Vrightarrow {0,1,2}$ be a function on $G$. The weight of $f$ is $omega(f)=sum_{vin V}f(v)$ and let $V_i={vin V colon f(v)=i}$, for $i=0,1,2$. The function $f$ is said to bebegin{itemize}item a Roman ${2}$-dominating function, if for every vertex $vin V_0$, $sum_{uin N(v)}f(u)geq 2$. The R...
full textCo-Roman domination in trees
Abstract: Let G=(V,E) be a graph and let f:V(G)→{0,1,2} be a function. A vertex v is protected with respect to f, if f(v)>0 or f(v)=0 and v is adjacent to a vertex of positive weight. The function f is a co-Roman dominating function, abbreviated CRDF if: (i) every vertex in V is protected, and (ii) each u∈V with positive weight has a neighbor v∈V with f(v)=0 such that the func...
full textOn Hop Roman Domination in Trees
Let $G=(V,E)$ be a graph. A subset $Ssubset V$ is a hop dominating setif every vertex outside $S$ is at distance two from a vertex of$S$. A hop dominating set $S$ which induces a connected subgraph is called a connected hop dominating set of $G$. Theconnected hop domination number of $G$, $ gamma_{ch}(G)$, is the minimum cardinality of a connected hopdominating set of $G$...
full textRoman domination excellent graphs: trees
A Roman dominating function (RDF) on a graph $G = (V, E)$ is a labeling $f : V rightarrow {0, 1, 2}$ suchthat every vertex with label $0$ has a neighbor with label $2$. The weight of $f$ is the value $f(V) = Sigma_{vin V} f(v)$The Roman domination number, $gamma_R(G)$, of $G$ is theminimum weight of an RDF on $G$.An RDF of minimum weight is called a $gamma_R$-function.A graph G is said to be $g...
full textA characterization relating domination, semitotal domination and total Roman domination in trees
A total Roman dominating function on a graph $G$ is a function $f: V(G) rightarrow {0,1,2}$ such that for every vertex $vin V(G)$ with $f(v)=0$ there exists a vertex $uin V(G)$ adjacent to $v$ with $f(u)=2$, and the subgraph induced by the set ${xin V(G): f(x)geq 1}$ has no isolated vertices. The total Roman domination number of $G$, denoted $gamma_{tR}(G)$, is the minimum weight $omega(f)=sum_...
full textMy Resources
Journal title
volume 3 issue 1
pages 79- 91
publication date 2018-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023