Minimizing the number of tool switches in flexible manufacturing cells subject to tools reliability using genetic algorithm

Authors

  • Hiwa Farughi Department of Industrial Engineering, University of Kurdistan, Sanandaj, Iran
  • Sobhan Mostafayi Department of Industrial Engineering, University of Kurdistan, Sanandaj, Iran
Abstract:

Nowadays, flexible manufacturing systems play an effective role in a variety of production and timely response to the needs of their customers. Flexible manufacturing cell is a part of this system that includes machines with flexibility in manufacturing different parts. For many years, minimizing the number of tool switches in the machines has been studied by the researchers. Most research in this field has not considered the limitations related to life and failure of the tool. Therefore, it is necessary to provide a model that, because of restrictions on tool life, the number of tool switches for a flexible cell is minimized. In this study, the impact of the tools reliability on minimizing the number of tool switches is examined. First, a mathematical model is presented for the problem. Because of the complexity of the problem, the exact solution of the problem in medium or large sizes is not possible in a reasonable time. Therefore, genetic meta-heuristic algorithm has been used for solving the problem and Keep tools needed soonest (KTNS) policy has been used to determine the optimal arrangement of tools. Then, some examples of such problem have been solved to evaluate the performance of the presented algorithm.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Role of batch size in scheduling optimization of flexible manufacturing system using genetic algorithm

Flexible manufacturing system (FMS) readily addresses the dynamic needs of the customers in terms of variety and quality. At present, there is a need to produce a wide range of quality products in limited time span. On-time delivery of customers’ orders is critical in make-to-order (MTO) manufacturing systems. The completion time of the orders depends on several factors including arrival rate, ...

full text

Minimizing the number of tool switching instants in Flexible Manufacturing Systems

In this study, we address a part-type sequencing and tool switching problem arising in Flexible Manufacturing Systems. We consider the single machine problem of minimizing the number of tool switching instants. We propose two tabu search approaches to find high-quality solutions. Our computational results reveal that both tabu search approaches produce optimal or near-optimal solutions in reaso...

full text

Scheduling of flexible manufacturing systems using genetic algorithm: A heuristic approach

Scheduling of production in Flexible Manufacturing Systems (FMSs) has been extensively investigated over the past years and it continues to attract the interest of both academic researchers and practitioners. The generation of new and modified production schedules is becoming a necessity in today’s complex manufacturing environment. Genetic algorithms are used in this paper to obtain an initial...

full text

the effect of using critical discourse analytical tools on the improvement of the learners level of critical thinking in reading comprehension

?it is of utmost priority for an experienced teacher to train the mind of the students, and enable them to think critically and correctly. the most important question here is that how to develop such a crucial ability? this study examines a new way to the development of critical thinking utilizing critical discourse analytical tools. to attain this goal, two classes of senior english la...

Minimizing Stoppage Cost of an Assembly Line Using Genetic Algorithm

This paper presents a nonlinear mixed-integer programming model to minimize the stoppage cost of mixed-model assembly lines. Nowadays, most manufacturing firms employ this type of line due to the increasing varieties of products in their attempts to quickly respond to diversified customer demands. Advancement of new technologies, competitiveness, diversification of products, and large customer ...

full text

Minimizing Stoppage Cost of an Assembly Line Using Genetic Algorithm

This paper presents a nonlinear mixed-integer programming model to minimize the stoppage cost of mixed-model assembly lines. Nowadays, most manufacturing firms employ this type of line due to the increasing varieties of products in their attempts to quickly respond to diversified customer demands. Advancement of new technologies, competitiveness, diversification of products, and large customer ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 10  issue special issue on Quality Control and Reliability

pages  17- 33

publication date 2017-06-20

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023