Microwave-Assisted Solution Combustion Synthesis of WO3 Nanoparticles: Optical and Colorimetric Characteristics
Authors
Abstract:
Tungsten oxide (WO3) and tungsten oxide hydrate (WO3.H2O) nanoparticles were synthesized via microwave-assisted solution combustion in comparison with the acidic precipitation method. Oxalic acid was used as a surfactant and forming agent in the acidic precipitation method. In addition to oxalic acid, glycine and citric acid were also used as fuels in the microwave-assisted combustion method. The synthesis process was investigated by thermogravimetric (TG) and Differential Thermal Analysis (DTA) analysis. The obtained nanoparticles were analyzed using the scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The sample synthesized via the acidic precipitation method showed an orthorhombic crystal structure. One of the samples synthesized via the microwave-assisted solution combustion method was monoclinic and the two others were amorphous. The acidic precipitation method resulted in uniform plate-like structures while the combusted samples indicated irregular spherical morphology. Fourier-transform infrared (FTIR) analysis revealed stretching-vibrating bands relating to W-O bonds in the synthesized tungsten oxide nanoparticles. The bandgap energy of the nanoparticles calculated using UV-Vis spectra and Tauc plot extrapolation increased with decreasing the particle size. The data of reflectance and colorimetry had good agreement with the maximum peak position in the absorption spectra. The results indicated that the acidic precipitation method controls the particle's morphology as well as the size distribution. Although the combustion of fuels releases a lot of heat, the synthesis by solution combustion can control the size and shape of the nanoparticles, which can be an appropriate method for mass production of nanoparticles.
similar resources
Microwave–Assisted Hydrothermal Synthesis and Optical Characterization of SnO2 Nanoparticles
Semiconductor nanoparticles exhibit size dependent properties due to quantum confinement effect that are not present in their bulk counterparts. In this work, extremely fine and pure SnO2 nanoparticles of ~1.1 nm size were synthesized by a solution process, in which amorphous precipitate of SnO2 was crystallized by microwave heating. The particles sizes varied from ~1.1 to ~2.7 nm. By XRD analy...
full textmicrowave–assisted hydrothermal synthesis and optical characterization of sno2 nanoparticles
semiconductor nanoparticles exhibit size dependent properties due to quantum confinement effect that arenot present in their bulk counterparts. in this work, extremely fine and pure sno2 nanoparticles of ~1.1nm size were synthesized by a solution process, in which amorphous precipitate of sno2 was crystallizedby microwave heating. the particles sizes varied from ~1.1 to ~2.7 nm. by xrd analysis...
full textMicrowave-assisted synthesis of molybdenum oxide nanoparticles
This paper focused on a simple approach for synthesis of molybdenum oxide (MoO3) nanoparticles and reports a facile route for synthesis of such nanoparticles, using microwave irradiation as a homogenous and powerful source of heating, using ethylene glycol as the solvent and heating medium. For more investigations, besides microwave heating, the obtained solutions were also treated by conventio...
full textOne Step Rapid Synthesis of Nano-Crystalline ZnO by Microwave-Assisted Solution Combustion Method
In this study nano-crystalline ZnO particles were synthesized by microwave-assisted solution combustion method. Zinc nitrate and urea were used as oxidizer and fuel, respectively. The effect of fuel to oxidizer (F/O) ratio on ZnO powder properties was investigated by using different urea/nitrate ratios. X-ray diffractometer, scanning electron microscopy and fourier transform infra-red were used...
full textMicrowave assisted ignition to achieve combustion synthesis
The use of microwave heating to initiate combustion synthesis has been increasingly investigated in recent years because of its advantages over traditional methods. A simple mathematical model is used to model these experiments. The microwave power absorption term is modelled as the product of an Arrhenius reaction term with a function that decays exponentially with distance. The former represe...
full textMicrowave-Assisted Synthesis of Alumina Nanoparticles Using Some Plants Extracts
In present study we used five green plants for microwave assisted synthesis of Alumina nanoparticles from Aluminum nitrate. Structural characterization was studied using x-ray diffraction that showed semi- crystalline and possibly, amorphous structure. Fourier infrared spectroscopy was used to determine Al-O bond and functional groups responsible for synthesis of nanoparticles. FTIR confirmed e...
full textMy Resources
Journal title
volume 5 issue 3
pages 36- 46
publication date 2019-09-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023