Microstructure and mechanical properties of AZ91 tubes fabricated by Multi-pass Parallel Tubular Channel Angular Pressing
Authors
Abstract:
Parallel Tubular Channel Angular Pressing (PTCAP) process is a novel recently developed severe plastic deformation (SPD) method for producing ultrafine grained (UFG) and nanograined (NG) tubular specimens with excellent mechanical and physical properties. This process has several advantageous compared to its TCAP counterparts. In this paper, a fine grained AZ91 tube was fabricated via multi pass parallel tubular channel angular pressing (PTCAP) process. Tubes were processed up to three passes PTCAP at 300 °C. Evolution of microstructure, mechanical properties and fracture behavior of the processed tubes after different passes were evaluated. Hardness, strength, and elongation were increased for processed tubes. Mean grain size was notably reduced to 3.8 μm for the tube which processed three passes from a 150 μm for the unprocessed tube. The maximum strength was found for second passes PTCAP processed tube which increased considerably about 108 %. The strength of the first pass processed tube increased about 62.5%. Increasing in elongation at room temperature was occurred, too. Mechanical properties of the third pass processed tube were deteriorated relatively because of appearing microcracks on the surface. Also, the hardness improved and it was increased about 77%. The result showed that the achieved mechanical properties consistent with microstructure.
similar resources
Plastic deformation analysis in parallel tubular channel angular pressing (PTCAP)
Parallel tubular channel angular pressing (PTCAP) process is a novel recently developed severe plastic deformation technique for fabrication of ultrafine grained (UFG) metallic tubes. This new process consists of two half cycles and is affected by several parameters such as channel angles, deformation ratio and curvature angles. In this paper, the effects of these parameters on the plastic defo...
full textEqual Channel Angular Pressing to Produce Ultrafine Pure Copper with Excellent Electrical and Mechanical Properties
In this article, commercially pure copper samples were severely deformed by equal channel angular pressing (ECAP) up to eight passes at room temperature. The effects of severe plastic deformation on the microstructure, mechanical properties, and electrical conductivity of the copper were investigated. The microstructure evolution was followed by optical microscope and field emission scanning el...
full textModeling and production of high strength Al strips by equal channel multi angular pressing method
Equal channel multi angular pressing (ECMAP) process is the efficient method to enhance the productivity of ultra-fine grained (UFG) materials, by increasing process continuity and as a result decreasing process required time. Comparing repetitive ECAP method, in the same period, the number of passes can be done by ECMAP. In this article, ECMAP of AL strips in two typical annealed and as receiv...
full textDevelopment Microstructure and Mechanical Properties of Commercially Pure Titanium Processed by Equal Channel Angular Pressing and Cold Drawing
Equal channel angular pressing has been used to refine the grain size of commercially pure titanium (grade 2) as well as other metals and alloys. Titanium grade 2 is usually processed at about 350 °C because it lacks sufficient ductility at lower temperatures. The warm processing temperature limits the capability of the equal channel angular pressing technique in improving the strength of titan...
full textThe Optimization of the Effective Parameters of the Die in Parallel Tubular Channel Angular Pressing Process by Using Neural Network and Genetic Algorithm Methods
One of reasons that researchers in recent years have tried to produce ultrafine grained materials is producing lightweight components with high strength and reliability. There are disparate methods for production of ultra-fine grain materials,one of which is severe plastic deformation method. Severe plastic deformation method comprises different processes, one of which is Parallel tubular chann...
full textThe Optimization of the Effective Parameters of the Die in Parallel Tubular Channel Angular Pressing Process by Using Neural Network and Genetic Algorithm Methods
One of reasons that researchers in recent years have tried to produce ultrafine grained materials is producing lightweight components with high strength and reliability. There are disparate methods for production of ultra-fine grain materials,one of which is severe plastic deformation method. Severe plastic deformation method comprises different processes, one of which is Parallel tubular chann...
full textMy Resources
Journal title
volume 50 issue 1
pages 16- 22
publication date 2017-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023