MHD Jeffrey NanoFluids Flow Over a Stretching Sheet Through a Porous Medium in Presence of Nonlinear Thermal Radiation and Heat Generation/Absorption
Authors
Abstract:
In this article, a numerical investigation of magnetohydrodynamic non-Newtonian nanofluid flow on a stretching sheet through an isotropic porous medium. The effects of both non-linear thermal radiation and heat generation/absorption were studied on distributions of velocity, temperature and concentration. On the other side, the governing partial differential equations have been transformed by using suitable similarity transformations into a system of ordinary differential equations and then solved, numerically by using the fourth order Runge-Kutta method with shooting technique. The principal findings of the study showed up that the effect of both Darcy number and magnetic field on the velocity profile is decreasing, while the impacts of both non-linear thermal radiation and heat source/skin on temperature are increasing and decreasing on concentration distribution respectively. Numerical solutions were calculated for the skin fraction, local Nusselt number and local Sherwood number for values of all important physical parameters.
similar resources
Numerical Solution of MHD Flow over a Nonlinear Porous Stretching Sheet
In this paper, the MagnetoHydroDynamic (MHD) boundary layer flow over a nonlinear porous stretching sheet is investigated by employing the Homotopy Perturbation Transform Method (HPTM) and the Pade´ approximation. The numerical solution of the governing non-linear problem is developed. Comparison of the present solution is made with the existing solution and excellent agreement is noted. Gr...
full textRadiation effects on MHD free convective boundary layer flow of nanofluids over a nonlinear stretching sheet
The present study focuses on the numerical solution of a steady free convective boundary-layer flow of a radiating nanofluid along a non-linear stretching sheet in the presence of transverse magnetic field. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. The governing boundary-layer equations of the problem are formulated and transformed into a n...
full textMHD Boundary Layer Flow and Heat Transfer of Newtonian Nanofluids over a Stretching Sheet with Variable Velocity and Temperature Distribution
Laminar boundary layer flow and heat transfer of Newtonian nanofluid over a stretching sheet with the sheet velocity distribution of the form (UW=cXβ) and the wall temperature distribution of the form (TW=T∞+aXr ) for the steady magnetohydrodynamic (MHD) is studied numerically. The governing momentum and energy equations are transformed to the local non-similarity equations using the appropriat...
full textMHD boundary layer flow and heat transfer of Newtonian nanofluids over a stretching sheet with variable velocity and temperature distribution
Laminar boundary layer flow and heat transfer of Newtonian nanofluid over a stretching sheet with the sheet velocity distribution of the form (Uw=CXβ) and the wall temperature distribution of the form (Tw= T∞+ axr) for the steady magnetohydrodynamic(MHD) is studied numerically. The governing momentum and energy equations are transformed to the local non-similarity equations using the appropriat...
full textMHD Three-Dimensional Stagnation-Point Flow and Heat Transfer of a Nanofluid over a Stretching Sheet
In this study, the three-dimensional magnetohydrodynamic (MHD) boundary layer of stagnation-point flow in a nanofluid was investigated. The Navier–Stokes equations were reduced to a set of nonlinear ordinary differential equations using a similarity transform. The similarity equations were solved for three types of nanoparticles: copper, alumina and titania with water as the base fluid, to inve...
full textMHD Natural Convection Flow of Casson Nanofluid over Nonlinearly Stretching Sheet Through Porous Medium with Chemical Reaction and Thermal Radiation
In the present work, the effects of chemical reaction on hydromagnetic natural convection flow of Casson nanofluid induced due to nonlinearly stretching sheet immersed in a porous medium under the influence of thermal radiation and convective boundary condition are performed numerically. Moreover, the effects of velocity slip at stretching sheet wall are also examined in this study. The highly ...
full textMy Resources
Journal title
volume 8 issue 1
pages 9- 22
publication date 2020-02-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023