Methanol crossover and selectivity of nafion/heteropolyacid/montmorillonite nanocomposite proton exchange membranes for DMFC applications

Authors

  • M. Azimi Faculty of Chemical and Petroleum Engineering, University of Tabriz, P. O. Box: 51666-16471, Tabriz, Iran
  • S.J. Peighambardoust Faculty of Chemical and Petroleum Engineering, University of Tabriz, P. O. Box: 51666-16471, Tabriz, Iran
Abstract:

In this work, we prepared the nafion/montmorillonite/heteropolyacid nanocomposite membranes for direct methanol fuel cells (DMFCs). The analyses such as X-ray diffraction (XRD), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM) were conducted to characterize the filler dispersion and membrane structure in prepared nanocomposite membranes. XRD patterns of nafion-CsPW-MMT nanocomposites membranes showed the exfoliated structure of membranes by adding MMT and CsPW. SEM-EDXA results showed proper dispersion of nanoparticles in the membrane matrices. Addition of CsPW-MMT to nafion membranes increases water uptake and IEC due to increase hydrophilic groups in membranes. The proton conductivity results showed that proton conductivity increases by increasing amount of CsPW and decreasing of clay content in the membrane. Methanol crossover through polymer electrolyte membranes is a critical issue and causes an important reduction of performance in DMFCs. The developed intercalated nafion/CsPW/MMT nanocomposite membranes have successfully improved the membrane barrier properties due to the unique feature of MMT which contributed to the formation of a longer pathway towards methanol across the membrane. The lowest methanol crossover of the developed membranes in this study was 1.651×10-6 cm2 s-1 which was lower than re-cast nafion membrane (2.078×10-6 cm2 s-1). The methanol permeability was significantly reduced by the incorporation of MMT and increased by addition of CsPW in the nafion membrane. Finally, according to the selectivity results, the nafion-MMT-CsPW nanocomposite membrane with MMT mass fraction of 2.5% and CsPW mass fraction of 8% shows the best membrane selectivity and this nanocomposite membrane could be suitable for application in DMFCs.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Novel PVA/La2Ce2O7 hybrid nanocomposite membranes for application in proton exchange membrane fuel cells

Proton exchange membrane fuel cells (PEMFCs) are electrochemical devices that show the highest power densities compared to the other type of fuel cell. In this work, nanocomposite membranes used for proton exchange membrane fuel cells as poly(vinyl alcohol)/La2Ce2O7 (PVA-LC) with the aim of increasing the water uptake and proton conductivity. Glutaraldehyde (GA) was used as cross linking agent ...

full text

Functionalized and Electrospun Polymeric Materials as High-Performance Membranes for Direct Methanol Fuel Cell: A Review

Proton exchange membranes (PEM) for a direct methanol fuel cell (DMFC) have main drawbacks which are methanol permeability, reduced proton conductivity and the cost of the membrane. This paper reviews different polymeric materials such as fluorinated, non-fluorinated, acid-base complex, and composite membranes for DMFC. Currently, nonfluorinated membranes gain a lot of atte...

full text

Characterization of Polyethylene-Graft-Sulfonated Polyarylsulfone Proton Exchange Membranes for Direct Methanol Fuel Cell Applications

This paper examines polymer film morphology and several important properties of polyethylene-graft-sulfonated polyarylene ether sulfone (PE-g-s-PAES) proton exchange membranes (PEMs) for direct methanol fuel cell applications. Due to the extreme surface energy differences between a semi-crystalline and hydrophobic PE backbone and several amorphous and hydrophilic s-PAES side chains, the PE-g-s-...

full text

Preparation and Characterization of Pectin Based Proton Exchange Membranes Derived by Solution Casting Method for Direct Methanol Fuel Cells

Direct methanol fuel cells (DMFCs) are considered to be one of the most promising candidates for portable and stationary applications in the view of their advantages such as high energy density, easy manipulation, high efficiency and they operate with liquid fuel which could be used without requiring any fuel-processing units. Electrolyte membrane of DMFC plays a key role as a proton conductor ...

full text

The electrochemical kinetics study of methanol at electrocatalyst Pt-Ru/C and the methanol diffusion in the modified proton exchange membranes

1. Abstract Pt-Ru/C catalyst has been applied extensively in direct methanol fuel cells for methanol electrochemical oxidation. In this study, a model for electrochemical kinetics of methanol has been developed for electrocatalyst Pt-Ru/C. The single cell performance of DMFC and AC impedance analysis were measured. The methanol crossover problem still remains a challenge for the applications of...

full text

Preparation and Characterization of Pectin Based Proton Exchange Membranes Derived by Solution Casting Method for Direct Methanol Fuel Cells

Direct methanol fuel cells (DMFCs) are considered to be one of the most promising candidates for portable and stationary applications in the view of their advantages such as high energy density, easy manipulation, high efficiency and they operate with liquid fuel which could be used without requiring any fuel-processing units. Electrolyte membrane of DMFC plays a key role as a proton conductor ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 14  issue 3

pages  65- 81

publication date 2017-10-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023