Melting Heat Transfer and Radiation Effects on Jeffrey Fluid Flow over a Continuously Moving Surface with a Parallel Free Stream
Authors
Abstract:
This article is proposed to address the melting heat transfer of a Jeffrey fluid in Blasius and Sakiadis flow caused due to a moving surface. Thermal radiation and a constant free stream are considered in this mathematical model. The non-linear coupled dimensionless equations from the governing equations are attained by employing appropriate similarity transformations. The resulting dimensionless equations are solved by implementing RKF method. The impact of sundry emerging parameters on different flow fields are interpreted with the help of figures and tables. For augmented values of Deborah number, the velocity profile diminishes in the case of Blasius flow and the reverse behavior in the Sakiadis flow is observed. Moreover, the velocity of non-Newtonian liquid in case of Blasius flow is superior to that of the Sakiadis flow. The present work is demonstrated by matching with the computational results in the literature and found to be outstanding agreement.
similar resources
Heat generation and radiation effects on steady MHD free convection flow of micropolar fluid past a moving surface
This paper was concerned with studying the magnetohydrodynamic steady laminar free convection flow of a micropolar fluid past a continuously moving surface in the presence of heat generation and thermal radiation. Similarity transformation was employed to transform the governing partial differential equations into ordinary ones, which were then solved numerically using the finite element method...
full textFluid Flow and Heat Transfer of Nanofluids over a Flat Plate with Conjugate Heat Transfer
The falling and settling of solid particles in gases and liquids is a natural phenomenon happens in many industrial processes. This phenomenon has altered pure forced convection to a combination of heat conduction and heat convection in a flow over a plate. In this paper, the coupling of conduction (inside the plate) and forced convection of a non-homogeneous nanofluid flow (over a flat plate) ...
full textBoundary Layer Flow and Heat Transfer with Variable Fluid Properties on a Moving Flat Plate in a Parallel Free Stream
The steady boundary layer flow and heat transfer of a viscous fluid on a moving flat plate in a parallel free stream with variable fluid properties are studied. Two special cases, namely, constant fluid properties and variable fluid viscosity, are considered. The transformed boundary layer equations are solved numerically by a finite-difference scheme known as Keller-box method. Numerical resul...
full textheat generation and radiation effects on steady mhd free convection flow of micropolar fluid past a moving surface
this paper was concerned with studying the magnetohydrodynamic steady laminar free convection flow of a micropolar fluid past a continuously moving surface in the presence of heat generation and thermal radiation. similarity transformation was employed to transform the governing partial differential equations into ordinary ones, which were then solved numerically using the finite element method...
full textMagnetohydrodynamics Fluid Flow and Heat Transfer over a Permeable Shrinking Sheet with Joule dissipation: Analytical Approach
A laminar, two dimensional, steady boundary layer Newtonian conducting fluid flow passes over a permeable shrinking sheet in the presence of a uniform magnetic field is investigated. The governing equations have converted to ordinary nonlinear differential equations (ODE) by using appropriate similarity transformations. The main idea is to transform ODE with infinite boundary condition into oth...
full textBoundary layer flow beneath a uniform free stream permeable continuous moving surface in a nanofluid
The main purpose of this paper is to introduce a boundary layer analysis for the fluid flow andheat transfer characteristics of an incompressible nanofluid flowing over a permeable isothermalsurface moving continuously. The resulting system of non-linear ordinary differential equations issolved numerically using the fifth–order Runge–Kutta method with shooting techniques usingMatlab and Maple s...
full textMy Resources
Journal title
volume 5 issue 2
pages 468- 476
publication date 2019-04-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023